Natural finite element techniques for viscous fluid motion

Abstract The paper surveys recent work on fluid dynamics performed at the ISD, University of Stuttgart. It is in particular directed to a natural description of the flow phenomena and includes also a consideration of thermally coupled problems. The derivation of the relevant finite element equations when referred to natural quantities is outlined and examples of application are given. Also presented is a discussion on the associated modern developments in numerical solutions techniques.

[1]  Itiro Tani,et al.  Experimental investigation of flow separation over a step , 1958 .

[2]  T. Hughes,et al.  An element-by-element solution algorithm for problems of structural and solid mechanics , 1983 .

[3]  Paulo M. Pimenta,et al.  Thermomechanical response of solids at high strains—Natural approach , 1982 .

[4]  Jacques Periaux,et al.  Domain decomposition methods for nonlinear problems in fluid dynamics , 1983 .

[5]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[6]  A. Jennings,et al.  The solution of sparse linear equations by the conjugate gradient method , 1978 .

[7]  François Thomasset,et al.  Implementation of Finite Element Methods for Navier-Stokes Equations , 1981 .

[8]  John Argyris,et al.  On the natural formulation and analysis of large deformation coupled thermomechanical problems , 1981 .

[9]  G. Comini,et al.  On the solution of the nonlinear heat conduction equations by numerical methods , 1973 .

[10]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  J. Argyris,et al.  Analysis of thermoplastic forming processes: Natural approach , 1984 .

[13]  Carlos A. Felippa,et al.  DIRECT TIME INTEGRATION METHODS IN NONLINEAR STRUCTURAL DYNAMICS , 1979 .

[14]  W. Prager,et al.  Introduction of Mechanics of Continua , 1962 .

[15]  J. H. Argyris,et al.  Finite-element analysis of slow incompressible viscous fluid motion , 1974 .

[16]  John Argyris,et al.  A primer on superplasticity in natural formulation , 1984 .

[17]  Thomas J. R. Hughes,et al.  New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. [element-by-element] , 1983 .

[18]  Antonio Fasano,et al.  Numerical solution of phase-change problems , 1973 .

[19]  K. Hohenemser,et al.  Über die Ansätze der Mechanik isotroper Kontinua , 1932 .

[20]  J. T. Oden,et al.  RIP-methods for Stokesian flows. , 1982 .

[21]  J. Argyris Three-dimensional anisotropic and inhomogeneous elastic media matrix analysis for small and large displacements , 1965 .

[22]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[23]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[24]  John Argyris,et al.  On the large strain inelastic analysis in natural formulation part I: Quasistatic problems , 1979 .