Optimized Edgebreaker encoding for large and regular triangle meshes

We present a technique aiming to improve the compression of the Edgebreaker CLERS string for large and regular meshes, where regularity is understood as the compactness of the distribution of vertex degrees. Our algorithm uses a specially designed context-based coding to compress the CLERS sequence. It is exceptionally simple to implement and can easily be incorporated into any existing Edgebreaker implementation which uses the Spirale Reversi algorithm for decompression. Even for irregular meshes, it does not carry considerable overhead when compared to the original Edgebreaker encoding. Experimental results show that our procedure is very fast (600000 triangles per second on a PIII 650 MHz for decompression) and leads to compression rates which are, in most cases, superior to those previously reported for large meshes of high regularity.

[1]  Jarek Rossignac,et al.  Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker , 1999, Comput. Geom..

[2]  Martin Isenburg,et al.  Spirale Reversi: Reverse Decoding of the Edgebreaker Encoding , 1999, CCCG.

[3]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[4]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[5]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[6]  A. Dold Lectures on Algebraic Topology , 1972 .

[7]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[8]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[9]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[10]  Michael Schindler,et al.  A fast renormalisation for arithmetic coding , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[11]  Stefan Gumhold,et al.  Improved cut-border machine for triangle mesh compression , 1999 .

[12]  Stefan Gumhold,et al.  New Bounds on The Encoding of Planar Triangulations , 2000 .

[13]  Jarek Rossignac,et al.  Guaranteed 3.67v bit encoding of planar triangle graphs , 1999, CCCG.

[14]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[15]  Pierre Alliez,et al.  Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes , 2002, Graph. Model..

[16]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[17]  Jarek Rossignac,et al.  An Edgebreaker-based efficient compression scheme for regular meshes , 2001, Comput. Geom..

[18]  Jarek Rossignac,et al.  Edgebreaker compression and Wrap&Zip decoding of the connectivity of triangle meshes , 1999 .