Koszul-type determinantal formulas for families of mixed multilinear systems

Effective computation of resultants is a central problem in elimination theory and polynomial system solving. Commonly, we compute the resultant as a quotient of determinants of matrices and we say that there exists a determinantal formula when we can express it as a determinant of a matrix whose elements are the coefficients of the input polynomials. We study the resultant in the context of mixed multilinear polynomial systems, that is multilinear systems with polynomials having different supports, on which determinantal formulas were not known. We construct determinantal formulas for two kind of multilinear systems related to the Multiparameter Eigenvalue Problem (MEP): first, when the polynomials agree in all but one block of variables; second, when the polynomials are bilinear with different supports, related to a bipartite graph. We use the Weyman complex to construct Koszul-type determinantal formulas that generalize Sylvester-type formulas. We can use the matrices associated to these formulas to solve square systems without computing the resultant. The combination of the resultant matrices with the eigenvalue and eigenvector criterion for polynomial systems leads to a new approach for solving MEP.

[1]  Deepak Kapur,et al.  Constructing Sylvester-type resultant matrices using the Dixon formulation , 2004, J. Symb. Comput..

[2]  Jerzy Weyman,et al.  Calculating discriminants by higher direct images , 1994 .

[3]  A.Morozov,et al.  Resultant as Determinant of Koszul Complex , 2008, 0812.5013.

[4]  C. D'Andrea,et al.  Explicit formulas for the multivariate resultant , 2000, math/0007036.

[5]  Erich Kaltofen,et al.  Expressing a fraction of two determinants as a determinant , 2008, ISSAC '08.

[6]  Angelos Mantzaflaris,et al.  Multihomogeneous resultant formulae for systems with scaled support , 2009, ISSAC '09.

[7]  A. McLennan The Expected Number of Nash Equilibria of a Normal Form Game , 2005 .

[8]  Simon Telen Numerical root finding via Cox rings , 2019, Journal of Pure and Applied Algebra.

[9]  Pierre-Jean Spaenlehauer,et al.  Solving multi-homogeneous and determinantal systems: algorithms, complexity, applications. (Résolution de systèmes multi-homogènes et déterminantiels : algorithmes, complexité, applications) , 2012 .

[10]  Ioannis Z. Emiris,et al.  On the Complexity of Sparse Elimination , 1996, J. Complex..

[11]  J. Jouanolou Formes d'inertie et résultant: un formulaire , 1997 .

[12]  Carlos D'Andrea,et al.  A Poisson formula for the sparse resultant , 2013, 1310.6617.

[13]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[14]  Mohab Safey El Din,et al.  Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..

[15]  Jean-Charles Faugère,et al.  Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case , 2018, ISSAC.

[16]  Alicia Dickenstein,et al.  Multihomogeneous resultant formulae by means of complexes , 2003, J. Symb. Comput..

[17]  T. Willmore Algebraic Geometry , 1973, Nature.

[18]  Ludovic Perret,et al.  Cryptanalysis of MinRank , 2008, CRYPTO.

[19]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[20]  Jean-Charles Faugère,et al.  Gröbner Basis over Semigroup Algebras: Algorithms and Applications for Sparse Polynomial Systems , 2019, ISSAC.

[21]  Angelos Mantzaflaris,et al.  Resultants and Discriminants for Bivariate Tensor-Product Polynomials , 2017, ISSAC.

[22]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[23]  Angelos Mantzaflaris,et al.  On the Bit Complexity of Solving Bilinear Polynomial Systems , 2016, ISSAC.

[24]  Deepak Kapur,et al.  Conditions for exact resultants using the Dixon formulation , 2000, ISSAC.

[25]  Angelos Mantzaflaris,et al.  Multilinear polynomial systems: Root isolation and bit complexity , 2021, J. Symb. Comput..

[26]  Deepak Kapur,et al.  Extraneous factors in the Dixon resultant formulation , 1997, ISSAC.

[27]  Joost Rommes,et al.  Spectral collocation solutions to multiparameter Mathieu's system , 2012, Appl. Math. Comput..

[28]  Jose Israel Rodriguez,et al.  Fiber product homotopy method for multiparameter eigenvalue problems , 2018, Numerische Mathematik.

[29]  Carlos D'Andrea,et al.  Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.

[30]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[31]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[32]  Bernard Mourrain,et al.  Matrices in Elimination Theory , 1999, J. Symb. Comput..

[33]  Michiel E. Hochstenbach,et al.  A Jacobi-Davidson Type Method for the Two-Parameter Eigenvalue Problem , 2005, SIAM J. Matrix Anal. Appl..

[34]  Hans Volkmer,et al.  Multiparameter eigenvalue problems and expansion theorems , 1988 .

[35]  Jean-Charles Faugère,et al.  Bilinear Systems with Two Supports: Koszul Resultant Matrices, Eigenvalues, and Eigenvectors , 2018, ISSAC.

[36]  Bor Plestenjak,et al.  On the quadratic two-parameter eigenvalue problem and its linearization☆ , 2010 .

[37]  Angelos Mantzaflaris,et al.  Matrix formulæ for resultants and discriminants of bivariate tensor-product polynomials , 2020, J. Symb. Comput..

[38]  Bo Dong,et al.  A Homotopy Method for Finding All Solutions of a Multiparameter Eigenvalue Problem , 2016, SIAM J. Matrix Anal. Appl..

[39]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[40]  Antoine Joux,et al.  A New Index Calculus Algorithm with Complexity $$L(1/4+o(1))$$ in Small Characteristic , 2013, Selected Areas in Cryptography.

[41]  B. Sturmfels,et al.  Multigraded Resultants of Sylvester Type , 1994 .