Wideband vibration energy harvesting using electromagnetic transduction for powering internet of things

Science Foundation Ireland (SFI PI Grant - 11/PI/1201); University College Cork (Strategic Research Fund)

[1]  Hans H. Gatzen,et al.  Thin film SmCo magnets for use in electromagnetic microactuators , 2006 .

[2]  Eric M. Yeatman,et al.  Characterization and Modeling of Nonlinearities in In-Plane Gap Closing Electrostatic Energy Harvester , 2015, Journal of Microelectromechanical Systems.

[3]  Jun Ding,et al.  FePt films fabricated by electrodeposition , 2007 .

[4]  Ephrahim Garcia,et al.  Piezoelectric resonance shifting using tunable nonlinear stiffness , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  Huiting Liu,et al.  Design, simulation, fabrication and characterization of a micro electromagnetic vibration energy harvester with sandwiched structure and air channel , 2012, Microelectron. J..

[6]  P. Wright,et al.  Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload , 2006 .

[7]  Yaowen Yang,et al.  A novel two-degrees-of-freedom piezoelectric energy harvester , 2013 .

[8]  D. Arnold,et al.  Permanent Magnets for MEMS , 2009, Journal of Microelectromechanical Systems.

[9]  J. M. Gilbert,et al.  Comparison of energy harvesting systems for wireless sensor networks , 2008, Int. J. Autom. Comput..

[10]  Shuo Cheng,et al.  Modeling of magnetic vibrational energy harvesters using equivalent circuit representations , 2007 .

[11]  Farid Ullah Khan,et al.  Copper foil-type vibration-based electromagnetic energy harvester , 2010 .

[12]  C. Ahn,et al.  Micromachined thick permanent magnet arrays on silicon wafers , 1996 .

[13]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[14]  S. N. Piramanayagam,et al.  Equiatomic CoPt thin films with extremely high coercivity , 2014 .

[15]  Hakan Urey,et al.  FR4-based electromagnetic energy harvester for wireless sensor nodes , 2010 .

[16]  Andrei M. Shkel,et al.  Capacitive detection in resonant MEMS with arbitrary amplitude of motion , 2007 .

[17]  Ehab F. El-Saadany,et al.  A wideband vibration-based energy harvester , 2008 .

[18]  Pranay Podder,et al.  Wideband electromagnetic energy harvesting from ambient vibrations , 2015 .

[19]  Masaki Nakano,et al.  Anisotropic properties in Fe–Pt thick film magnets , 2009 .

[20]  John Heit,et al.  A VIBRATION ENERGY HARVESTING STRUCTURE, TUNABLE OVER A WIDE FREQUENCY RANGE USING MINIMAL ACTUATION , 2013 .

[21]  C. Yuen,et al.  Review on energy harvesting and energy management for sustainable wireless sensor networks , 2011, 2011 IEEE 13th International Conference on Communication Technology.

[22]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.

[23]  Libor Rufer,et al.  Dynamic simulation of an implemented electrostatic power micro-generator , 2005 .

[24]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[25]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[26]  S. P. Beeby,et al.  Vibration energy harvesting: fabrication, miniaturisation and applications , 2015, Microtechnologies for the New Millennium.

[27]  A. Chapuis,et al.  The history of the self-winding watch, 1770-1931 , 1956 .

[28]  Pranay Podder,et al.  A bistable electromagnetic micro-power generator using FR4-based folded arm cantilever , 2015 .

[29]  Andreas Vogl,et al.  Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs , 2010 .

[30]  Timothy C. Green,et al.  Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers , 2007 .

[31]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[32]  C. Mclyman Magnetic Materials and Their Characteristics , 2011 .

[33]  Peter Woias,et al.  Electromagnetic vibration harvester with piezoelectrically tunable resonance frequency , 2010 .

[34]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[35]  Chengkuo Lee,et al.  Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes , 2012 .

[36]  Yiannos Manoli,et al.  Efficient Energy Harvesting With Electromagnetic Energy Transducers Using Active Low-Voltage Rectification and Maximum Power Point Tracking , 2012, IEEE Journal of Solid-State Circuits.

[37]  Bernard H. Stark,et al.  Maximum Power Transfer Tracking for Ultralow-Power Electromagnetic Energy Harvesters , 2014, IEEE Transactions on Power Electronics.

[38]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[39]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[40]  Bradley J. Nelson,et al.  Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators , 2005 .

[41]  Andrew G. Glen,et al.  APPL , 2001 .

[42]  Pilkee Kim,et al.  A multi-stable energy harvester: Dynamic modeling and bifurcation analysis , 2014 .

[43]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[44]  Jeffrey D. Morse,et al.  Micro‐fuel cell power sources , 2007 .

[45]  E Pina,et al.  Coercivity in SmCo hard magnetic films for MEMS applications , 2005 .

[46]  James C. Kellogg,et al.  Energy scavenging for small-scale unmanned systems , 2006 .

[47]  Arata Masuda,et al.  Global stabilization of high-energy resonance for a nonlinear wideband electromagnetic vibration energy harvester , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[48]  Saibal Roy,et al.  Design , fabrication and test of integrated microscale vibration-based electromagnetic generator , 2008 .

[49]  Bradley J. Nelson,et al.  Pulse-Reverse Electrodeposited Nanograinsized CoNiP Thin Films and Microarrays for MEMS Actuators , 2005 .

[50]  A. Mathewson,et al.  Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices , 2014 .

[51]  Scott D. Moss,et al.  Scaling and power density metrics of electromagnetic vibration energy harvesting devices , 2015 .

[52]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[53]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[54]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[55]  Chi-Ying Tsui,et al.  Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[56]  U. Feudel,et al.  Control of multistability , 2014 .

[57]  Steve Beeby,et al.  A credit card sized self powered smart sensor node , 2011 .

[58]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[59]  Igor Paprotny,et al.  Bistable springs for wideband microelectromechanical energy harvesters , 2013 .

[60]  Mauro Serpelloni,et al.  An efficient electromagnetic power harvesting device for low-frequency applications , 2011 .

[61]  G. Lua,et al.  Development and characterization of a silicon-based micro direct methanol fuel cell , 2003 .

[62]  Elena Blokhina,et al.  Electrostatic Kinetic Energy Harvesting , 2016 .

[63]  Naigang Wang,et al.  Thick Electroplated Co-Rich Co-Pt Micromagnet Arrays for Magnetic MEMS , 2008, IEEE Transactions on Magnetics.

[64]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[65]  Shad Roundy,et al.  A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate , 2013 .

[66]  Dimitrios Niarchos,et al.  Magnetic MEMS: key issues and some applications , 2003 .

[67]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[68]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[69]  Giorgos Fagas,et al.  ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology , 2014 .

[70]  A. Walther,et al.  High performance hard magnetic NdFeB thick films for integration into micro-electro-mechanical systems , 2007, cond-mat/0703785.

[71]  R. Duggirala,et al.  Pervasive power: a radioisotope-powered piezoelectric generator , 2005, IEEE Pervasive Computing.

[72]  Dibin Zhu,et al.  General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters , 2012 .

[73]  Mengdi Han,et al.  Design and Fabrication of Integrated Magnetic MEMS Energy Harvester for Low Frequency Applications , 2014, Journal of Microelectromechanical Systems.

[74]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[75]  R. B. Yates,et al.  Development of an electromagnetic micro-generator , 2001 .

[76]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[77]  P. D. Mitcheson,et al.  Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications , 2012, IEEE Transactions on Power Electronics.

[78]  C. Olson,et al.  Dynamical symmetry breaking and chaos in Duffing’s equation , 1991 .

[79]  Mohammed F. Daqaq,et al.  Response of uni-modal duffing-type harvesters to random forced excitations , 2010 .

[80]  Weifang Liu,et al.  Magnetic properties of Fe–Pt thick-film magnets prepared by RF sputtering , 2006 .

[81]  David Charnegie,et al.  Frequency Tuning Concepts For Piezoelectric Cantilever Beams And Plates For Energy Harvesting , 2007 .

[82]  David P. Arnold,et al.  Electroplated L10 CoPt thick-film permanent magnets , 2014 .

[83]  Bruno Ando,et al.  Nonlinear mechanism in MEMS devices for energy harvesting applications , 2010 .

[84]  Yunlong Zi,et al.  A Water‐Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments , 2016 .

[85]  S. P. Beeby,et al.  Experimental comparison of macro and micro scale electromagnetic vibration powered generators , 2007 .

[86]  Andrew P. Roberts,et al.  First‐order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples , 2000 .

[87]  Khalil Najafi,et al.  A self-supplied inertial piezoelectric energy harvester with power-management IC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[88]  David P. Arnold,et al.  FULLY BATCH-FABRICATED MEMS MAGNETIC VIBRATIONAL ENERGY HARVESTERS , 2009 .

[89]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[90]  G. Tan,et al.  A review of thermoelectric cooling: Materials, modeling and applications , 2014 .

[91]  Ali Muhtaroglu,et al.  A Compact Electromagnetic Vibration Harvesting System with High Performance Interface Electronics , 2011 .

[92]  Jacob L. Jones,et al.  Texture analysis of thick bismuth ferrite lead titanate layers , 2014, 2014 15th International Conference on Electronic Packaging Technology.

[93]  Seung-Bok Choi,et al.  An investigation on piezoelectric energy harvesting for MEMS power sources , 2005 .

[94]  Jan M. Rabaey,et al.  Power Sources for Wireless Sensor Networks , 2004, EWSN.

[95]  N. Myung,et al.  Development of electroplated magnetic materials for MEMS , 2003 .

[96]  S. Kulkarni,et al.  Development of nanostructured, stress-free Co-rich CoPtP films for magnetic microelectromechanical system applications , 2007 .

[97]  Dhiman Mallick,et al.  An Electrically Tunable Low Frequency Electromagnetic Energy Harvester , 2014 .

[98]  Kai Zhang,et al.  A FREQUENCY ADJUSTABLE VIBRATION ENERGY HARVESTER , 2008 .

[99]  T. Markvart,et al.  Principles of Solar Cell Operation , 2018 .

[100]  Daniel J. Apo,et al.  High Power Density Levitation-Induced Vibration Energy Harvester , 2014 .

[101]  Angus Low,et al.  LONDON MILLENNIUM BRIDGE: PEDESTRIAN-INDUCED LATERAL VIBRATION , 2001 .

[102]  Leon O. Chua,et al.  Neural networks for nonlinear programming , 1988 .

[103]  Saibal Roy,et al.  Deposition of thick Co-rich CoPtP films with high energy product for magnetic microelectromechanical applications , 2010 .

[104]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[105]  Tuna Balkan,et al.  An electromagnetic micro power generator for wideband environmental vibrations , 2008 .

[106]  A. Amann,et al.  A nonlinear stretching based electromagnetic energy harvester on FR4 for wideband operation , 2014 .

[107]  Masanori Kobayashi,et al.  Magneto-plasmonics on perpendicular magnetic CoPt–Ag nanostructures with ZnO intermediate thin layers , 2015 .

[108]  G. Hadjipanayis,et al.  Coercivity analysis in sputtered Sm–Co thin films , 1999 .

[109]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[110]  K. Najafi,et al.  Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications , 2008, IEEE Sensors Journal.

[111]  Neil M. White,et al.  An electromagnetic, vibration-powered generator for intelligent sensor systems , 2004 .

[112]  Claude Richard,et al.  Single crystals and nonlinear process for outstanding vibration-powered electrical generators , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[113]  Guang Zhu,et al.  Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications , 2015 .

[114]  Pranay Podder,et al.  Influence of combined fundamental potentials in a nonlinear vibration energy harvester , 2016, Scientific Reports.

[115]  Yiannos Manoli,et al.  A Sub-500 mV Highly Efficient Active Rectifier for Energy Harvesting Applications , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[116]  Tianwei Ma,et al.  Enhancing mechanical energy harvesting with dynamics escaped from potential well , 2012 .

[117]  Sam Behrens,et al.  Energy Options for Wireless Sensor Nodes , 2008, Sensors.

[118]  Sang-Gook Kim,et al.  Ultra-wide bandwidth piezoelectric energy harvesting , 2011 .

[119]  Carroll,et al.  Pseudoperiodic driving: Eliminating multiple domains of attraction using chaos. , 1991, Physical review letters.

[120]  Neil M. White,et al.  Design and fabrication of a new vibration-based electromechanical power generator , 2001 .

[121]  Junyi Cao,et al.  Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting , 2014 .

[122]  Yosi Shacham-Diamand,et al.  Deposition of CoPtP films from citric electrolyte , 2007 .

[123]  Dhiman Mallick,et al.  Analysis of Nonlinear Spring Arm for Improved Performance of Vibrational Energy Harvesting Devices , 2013 .

[124]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[125]  T. S. Ramulu,et al.  Structure, growth and magnetic property of hard magnetic CoPtP nanowires synthesized by electrochemical deposition , 2012 .

[126]  Suhas S. Mohite,et al.  Squeeze Film Effects in MEMS Devices , 2007 .

[127]  Elena Blokhina,et al.  Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact , 2014 .

[128]  Zhongliang Li,et al.  Analysis of an in-plane electromagnetic energy harvester with integrated magnet array , 2014 .

[129]  J. Y. Park,et al.  A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array , 2016 .

[130]  M. Ghovanloo,et al.  Fully integrated wideband high-current rectifiers for inductively powered devices , 2004, IEEE Journal of Solid-State Circuits.

[131]  L. Schultz,et al.  Fully Epitaxial, Exchange Coupled SmCo$_{5}$/Fe Multilayers With Energy Densities above 400 kJ/m $^{3}$ , 2012, IEEE Transactions on Magnetics.

[132]  C. Saha,et al.  Scaling effects for electromagnetic vibrational power generators , 2007, ArXiv.

[133]  K. Najafi,et al.  A VIBRATION HARVESTING SYSTEM FOR BRIDGE HEALTH MONITORING APPLICATIONS , 2010 .

[134]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[135]  Mostafa Soliman,et al.  Wideband Micro-Power Generators for Vibration Energy Harvesting , 2009 .

[136]  Ji Shi,et al.  Highly (001) oriented L10-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy , 2015 .

[137]  Chengkuo Lee,et al.  Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester , 2014 .

[138]  Chengkuo Lee,et al.  An Electromagnetic MEMS Energy Harvester Array with Multiple Vibration Modes , 2015, Micromachines.

[139]  Guifu Ding,et al.  Tuning of nonlinear vibration via topology variation and its application in energy harvesting , 2012 .

[140]  F. J. Cadieu,et al.  Enhanced magnetic properties of nanophase SmCo/sub 5/ film dispersions , 2001 .

[141]  Chitta Saha,et al.  Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion , 2008, Smart Materials and Structures.

[142]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[143]  William W. Clark,et al.  Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms , 2010 .

[144]  Stephen G. Burrow,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2009 .

[145]  Anantha Chandrakasan,et al.  An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor , 2010, IEEE Journal of Solid-State Circuits.

[146]  Hong Wang,et al.  Electroplated hard magnetic material and its application in microelectromechanical systems , 2005 .

[147]  Dimitri Galayko,et al.  A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices , 2015 .

[148]  S. Boisseau,et al.  Electrostatic Conversion for Vibration Energy Harvesting , 2012, 1210.5191.

[149]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[150]  Skandar Basrour,et al.  Design and fabrication of piezoelectric micro power generators for autonomous microsystems , 2005 .

[151]  Pranay Podder,et al.  Bandwidth widening in nonlinear electromagnetic vibrational generator by combined effect of bistability and stretching , 2014 .

[152]  Kevin Ashton,et al.  That ‘Internet of Things’ Thing , 1999 .

[153]  K. Maenaka,et al.  Electromagnetic energy harvester by using buried NdFeB , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[154]  Sang-Gook Kim,et al.  Experimental verification of a bridge-shaped, nonlinear vibration energy harvester , 2014 .

[155]  Daniel Guyomar,et al.  Experimental Duffing oscillator for broadband piezoelectric energy harvesting , 2011 .

[156]  Yonggang Jiang,et al.  Fabrication of a vibration-driven electromagnetic energy harvester with integrated NdFeB/Ta multilayered micro-magnets , 2011 .

[157]  J. M. D. Coey,et al.  Thick-film permanent magnets by membrane electrodeposition , 2005 .

[158]  Julien Penders,et al.  Energy Harvesting for Autonomous Wireless Sensor Networks , 2010, IEEE Solid-State Circuits Magazine.

[159]  Koki Takanashi,et al.  Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films , 2004 .

[160]  Eun Sok Kim,et al.  Power generation from human body motion through magnet and coil arrays with magnetic spring , 2014 .

[161]  Patrick J. Smith,et al.  AN EFFICIENT LOW COST ELECTROMAGNETIC VIBRATION HARVESTER , 2009 .

[162]  A. Akhnoukh,et al.  An Integration Scheme for RF Power Harvesting , 2005 .

[163]  Fuh-Gwo Yuan,et al.  An enhanced performance of a horizontal diamagnetic levitation mechanism–based vibration energy harvester for low frequency applications , 2017 .

[164]  In-Ho Kim,et al.  A tunable rotational energy harvester for low frequency vibration , 2011 .

[165]  Dibin Zhu,et al.  A tunable kinetic energy harvester with dynamic over range protection , 2010 .

[166]  Yang Zhang,et al.  Toward self-tuning adaptive vibration-based microgenerators , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[167]  Wq Liu,et al.  Maximum mechanical energy harvesting strategy for a piezoelement , 2007 .

[168]  M. D. de Boer,et al.  Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment , 2009 .

[169]  O. Olusola,et al.  Synchronization, multistability and basin crisis in coupled pendula , 2010 .

[170]  Magnus Jonsson,et al.  Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself , 2013, Annals of Biomedical Engineering.

[171]  Leran Wang,et al.  An integrated approach to energy harvester modeling and performance optimization , 2007, 2007 IEEE International Behavioral Modeling and Simulation Workshop.

[172]  G. Hadjipanayis,et al.  CoPt and FePt nanowires by electrodeposition , 2002 .

[173]  Influence of temperature on the magnetic properties of electroplated L10 CoPt thick films , 2015 .

[174]  Masaki Nakano,et al.  A method of preparing anisotropic Nd-Fe-B film magnets by pulsed laser deposition , 2006 .

[175]  Farid Ullah Khan,et al.  Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations , 2014 .

[176]  Mo Li,et al.  Multichannel cavity optomechanics for all-optical amplification of radio frequency signals , 2012, Nature Communications.

[177]  G. Hinds,et al.  Electrodeposited FePt films , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[178]  S. Beeby,et al.  Strategies for increasing the operating frequency range of vibration energy harvesters: a review , 2010 .

[179]  J. M. D. Coey,et al.  Magnetic anisotropy — How much is enough for a permanent magnet? , 2016 .

[180]  Marco Ferrari,et al.  Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems , 2008 .

[181]  Wei Wang,et al.  A hybrid micro vibration energy harvester with power management circuit , 2015 .

[182]  Yuantai Hu,et al.  A piezoelectric power harvester with adjustable frequency through axial preloads , 2007 .

[183]  Joshua R. Smith,et al.  Experimental results with two wireless power transfer systems , 2009, 2009 IEEE Radio and Wireless Symposium.

[184]  Ali Muhtaroglu,et al.  An interface circuit prototype for a vibration-based electromagnetic energy harvester , 2010, 2010 International Conference on Energy Aware Computing.

[185]  Shouheng Sun,et al.  Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) , 1999 .

[186]  Timothy C. Green,et al.  Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices , 2008, Proceedings of the IEEE.

[187]  J. Svoboda,et al.  Magnetic techniques for the treatment of materials , 2004 .

[188]  Roberto Cingolani,et al.  Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures. , 2009, Nano letters.

[189]  Luca Callegaro,et al.  Electroplated, high H c CoPt films: dM magneto-optical measurements , 1996 .

[190]  Eun Sok Kim,et al.  Microfabricated Electromagnetic Energy Harvesters With Magnet and Coil Arrays Suspended by Silicon Springs , 2016, IEEE Sensors Journal.

[191]  Fred Roozeboom,et al.  High Energy Density All‐Solid‐State Batteries: A Challenging Concept Towards 3D Integration , 2008 .

[192]  S. Basrour,et al.  Integrated Power Harvesting System Including a MEMS Generator and a Power Management Circuit , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[193]  Neil M. White,et al.  Towards a piezoelectric vibration-powered microgenerator , 2001 .

[194]  Mahmoud Almasri,et al.  Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations , 2014 .

[195]  M. Gibbs,et al.  Effect of target power and composition on RE–Fe–B thin films with Cu and Nb buffer and cap layers , 2006 .

[196]  D. M. Scott The physics of vibrations and waves , 1986 .

[197]  Tadahiro Ohmi,et al.  Total Room Temperature Wet Cleaning for Si Substrate Surface , 1996 .

[198]  Dibin Zhu,et al.  A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data , 2013 .

[199]  B. Desloges,et al.  Electrodeposition of hard magnetic CoPtP material and integration into magnetic MEMS , 2006 .

[200]  Dibin Zhu,et al.  Vibration energy harvesting using the Halbach array , 2012 .

[201]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[202]  Bozidar Marinkovic,et al.  Smart Sand—a wide bandwidth vibration energy harvesting platform , 2009 .

[203]  Dimitrios Peroulis,et al.  Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester , 2015 .

[204]  Alexander N. Pisarchik,et al.  Using periodic modulation to control coexisting attractors induced by delayed feedback , 2003 .

[205]  D. A. Thompson,et al.  The Future of Magnetic Data Storage Technology , 2000 .

[206]  A Carrella,et al.  Tuning a resonant energy harvester using a generalized electrical load , 2010 .

[207]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[208]  Ningning Wang,et al.  Review of Integrated Magnetics for Power Supply on Chip (PwrSoC) , 2012, IEEE Transactions on Power Electronics.

[209]  Yonas Tadesse,et al.  Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic , 2009 .

[210]  M. Shamsuzzoha,et al.  Enhancing the perpendicular magnetic anisotropy of Co–Pt(P) films by epitaxial electrodeposition onto Cu(1 1 1) substrates , 2005 .

[211]  James Wang,et al.  Characterization of sputtered SmCo thin films for light element contamination using RBS and HIERDA techniques , 2004 .

[212]  Haluk Kulah,et al.  A MEMS-based energy harvester for generating energy from non-resonant environmental vibrations , 2013 .

[213]  Xiao Hu,et al.  Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper , 2015 .

[214]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[215]  S. Renard Industrial MEMS on SOI , 2000 .

[216]  Saibal Roy,et al.  Electrodeposited anisotropic NiFe 45/55 thin films for high-frequency micro-inductor applications , 2010 .

[217]  D.P. Arnold,et al.  Review of Microscale Magnetic Power Generation , 2007, IEEE Transactions on Magnetics.

[218]  Foss,et al.  Multistability and delayed recurrent loops. , 1996, Physical review letters.

[219]  Wen Hu,et al.  Springbrook: Challenges in developing a long-term, rainforest wireless sensor network , 2008, 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[220]  Chengkuo Lee,et al.  A multi-frequency vibration-based MEMS electromagnetic energy harvesting device , 2013 .

[221]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[222]  A. Takada,et al.  Electrodeposited Co-Ni-Re-W-P thick array of high vertical magnetic anisotropy , 2005, IEEE Transactions on Magnetics.

[223]  Ulrich Parlitz,et al.  Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ + x + x3 = f cos(ωt) , 1985 .

[224]  Barbara Hughes,et al.  Energy storage , 2011 .

[225]  Quan Yuan,et al.  Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators , 2012 .

[226]  Dhiman Mallick,et al.  Bidirectional electrical tuning of FR4 based electromagnetic energy harvesters , 2015 .

[227]  Xiaobiao Shan,et al.  A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms , 2016 .

[228]  Sung-Mo Kang,et al.  Development of a wide tuning range MEMS tunable capacitor for wireless communication systems , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[229]  Gregory P. Carman,et al.  Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier , 2014 .

[230]  Ding,et al.  Trajectory (Phase) Selection in Multistable Systems: Stochastic Resonance, Signal Bias, and the Effect of Signal Phase. , 1995, Physical review letters.

[231]  Greg P. Carman,et al.  Mesoscale actuator device: micro interlocking mechanism to transfer macro load , 1999 .

[232]  Ric M. Allott,et al.  New techniques for laser micromachining MEMS devices , 2002, SPIE High-Power Laser Ablation.

[233]  Z. Zhang,et al.  RAPID COMMUNICATION Nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5.5/α-Fe multilayer magnets with high performance , 2003 .

[234]  Khaled Ben Letaief,et al.  Energy harvesting small cell networks: feasibility, deployment, and operation , 2015, IEEE Communications Magazine.

[235]  Elisabeth Dufour-Gergam,et al.  Energy harvesting system for cardiac implant applications , 2011, 2011 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP).

[236]  M. Loehndorf,et al.  EVALUATION OF ENERGY HARVESTING CONCEPTS FOR TIRE PRESSURE MONITORING SYSTEMS , 2009 .

[237]  A. Brenner Electrodeposition of Alloys: Principles and Practice , 2013 .

[238]  Yu-Nu Hsu,et al.  Magnetic properties of nanostructured CoPt and FePt thin films , 2000 .

[239]  Michael Walls,et al.  Nanocrystallinity and the ordering of nanoparticles in two-dimensional superlattices: controlled formation of either core/shell (Co/CoO) or hollow CoO nanocrystals. , 2013, ACS nano.

[240]  C. R. Pike First-order reversal-curve diagrams and reversible magnetization , 2003 .

[241]  Mohammed F. Daqaq,et al.  Energy harvesting in the super-harmonic frequency region of a twin-well oscillator , 2012 .

[242]  Pranay Podder,et al.  Nonlinear Energy Harvesting Using Electromagnetic Transduction for Wide Bandwidth , 2016, IEEE Magnetics Letters.

[243]  Ghislain Despesse,et al.  Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging , 2005 .

[244]  Y. Shacham-Diamand,et al.  Electrodeposited Near-Equiatomic CoPt Thick Films , 2008 .

[245]  David E. Culler,et al.  Perpetual environmentally powered sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[246]  Huan Xue,et al.  Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[247]  Eun Sok Kim,et al.  Micromachined Energy-Harvester Stack With Enhanced Electromagnetic Induction Through Vertical Integration of Magnets , 2015, Journal of Microelectromechanical Systems.

[248]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[249]  Norbert Müller,et al.  PERFORMANCE ANALYSIS OF BRAYTON AND RANKINE CYCLE MICROSYSTEMS FOR PORTABLE POWER GENERATION , 2002 .

[250]  R. Olsson,et al.  Post-CMOS-Compatible Aluminum Nitride Resonant MEMS Accelerometers , 2008, Journal of Microelectromechanical Systems.

[251]  Tarik Bourouina,et al.  Bistable electromagnetic generator based on buckled beams for vibration energy harvesting , 2014 .

[252]  Jr. W.H. Clingam Radioisotopic power generation , 1965 .

[253]  Daniel J. Inman,et al.  Impact-induced high-energy orbits of nonlinear energy harvesters , 2015 .

[254]  Leila Parsa,et al.  A new single stage AC-DC converter for low voltage electromagnetic energy harvesting , 2010, 2010 IEEE Energy Conversion Congress and Exposition.

[255]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[256]  Dhiman Mallick,et al.  High Figure of Merit Nonlinear Microelectromagnetic Energy Harvesters for Wideband Applications , 2017, Journal of Microelectromechanical Systems.

[257]  Fei Wang,et al.  Electrostatic energy harvesting device with out-of-the-plane gap closing scheme , 2013, International Conference on Solid-State Sensors, Actuators and Microsystems.

[258]  Tamás Kalmár-Nagy,et al.  Forced Harmonic Vibration of a Duffing Oscillator with Linear Viscous Damping , 2011 .

[259]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[260]  Xinping Cao,et al.  Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System , 2007, IEEE Transactions on Power Electronics.

[261]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[262]  Di Chen,et al.  A MEMS-based piezoelectric power generator array for vibration energy harvesting , 2008, Microelectron. J..

[263]  Karen Margaret Holford,et al.  Energy Harvesting for Aerospace Structural Health Monitoring Systems , 2012 .

[264]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[265]  Paul Bã ¼ rger Silicon Vlsi Technology Fundamentals Practice And Modeling , 2016 .

[266]  T. Petropoulos,et al.  MEMS coupled resonators for power generation and sensing , 2004 .

[267]  Joseph Gies,et al.  Cathedral, Forge, and Waterwheel: Technology and Invention in the Middle Ages , 1994 .

[268]  Yuji Tanaka,et al.  Electromagnetic Energy Harvester by Using NdFeB Sputtered on High Aspect Ratio Si Structure , 2013 .

[269]  S. Guessab,et al.  Actuation of resonant MEMS using short pulsed forces , 2004 .

[270]  Z. Wang,et al.  Exchange‐Coupled Nanocomposite Magnets by Nanoparticle Self‐Assembly. , 2003 .

[271]  Chengkuo Lee,et al.  An In-Plane Approximated Nonlinear MEMS Electromagnetic Energy Harvester , 2014, Journal of Microelectromechanical Systems.

[272]  C. Sutcliffe,et al.  Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications , 2005 .

[273]  Y. Wang,et al.  Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).