Rethinking Personas for Fairness: Algorithmic Transparency and Accountability in Data-Driven Personas

Algorithmic fairness criteria for machine learning models are gathering widespread research interest. They are also relevant in the context of data-driven personas that rely on online user data and opaque algorithmic processes. Overall, while technology provides lucrative opportunities for the persona design practice, several ethical concerns need to be addressed to adhere to ethical standards and to achieve end user trust. In this research, we outline the key ethical concerns in data-driven persona generation and provide design implications to overcome these ethical concerns. Good practices of data-driven persona development include (a) creating personas also from outliers (not only majority groups), (b) using data to demonstrate diversity within a persona, (c) explaining the methods and their limitations as a form of transparency, and (d) triangulating the persona information to increase truthfulness.

[1]  Manfred Tscheligi,et al.  Basic senior personas: a representative design tool covering the spectrum of European older adults , 2012, ASSETS '12.

[2]  Seth Neel,et al.  Rawlsian Fairness for Machine Learning , 2016, ArXiv.

[3]  Chris Chapman,et al.  The Personas' New Clothes: Methodological and Practical Arguments against a Popular Method , 2006 .

[4]  Ifeoma Ajunwa,et al.  The Paradox of Automation as Anti-Bias Intervention , 2016 .

[5]  Marcus Tomalin,et al.  Quarantining online hate speech: technical and ethical perspectives , 2019, Ethics and Information Technology.

[6]  Bernard J. Jansen,et al.  Automatically Conceptualizing Social Media Analytics Data via Personas , 2018, ICWSM.

[7]  Nicola Marsden,et al.  Perceptions of Personas: The Role of Instructions , 2018, 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC).

[8]  Maja Cukusic,et al.  The potential and issues in data-driven development of web personas , 2018, 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[9]  Joy Goodman-Deane,et al.  Evaluating Inclusivity using Quantitative Personas , 2018, DRS2018: Catalyst.

[10]  David A. Siegel The mystique of numbers: belief in quantitative approaches to segmentation and persona development , 2010, CHI EA '10.

[11]  Tamara Sumner,et al.  A latent semantic analysis methodology for the identification and creation of personas , 2008, CHI.

[12]  Bernard J. Jansen,et al.  Detecting Demographic Bias in Automatically Generated Personas , 2019, CHI Extended Abstracts.

[13]  Bernard J. Jansen,et al.  Are personas done? Evaluating their usefulness in the age of digital analytics , 2018, Persona Studies.

[14]  Bernard J. Jansen,et al.  From 2, 772 segments to five personas: Summarizing a diverse online audience by generating culturally adapted personas , 2018, First Monday.

[15]  Lene Nielsen,et al.  Personas is applicable: a study on the use of personas in Denmark , 2014, CHI.

[16]  Tal Z. Zarsky,et al.  The Trouble with Algorithmic Decisions , 2016 .

[17]  Anna Lauren Hoffmann,et al.  Recasting Justice for Internet and Online Industry Research Ethics , 2016 .

[18]  BEN GREEN,et al.  The Principles and Limits of Algorithm-in-the-Loop Decision Making , 2019, Proc. ACM Hum. Comput. Interact..

[19]  Bernard J. Jansen,et al.  Generating Cultural Personas from Social Data: A Perspective of Middle Eastern Users , 2017, 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW).

[20]  Mariarosaria Taddeo,et al.  The ethics of algorithms: Mapping the debate , 2016, Big Data Soc..

[21]  Nalini Kotamraju,et al.  Data-driven persona development , 2008, CHI.

[22]  Karrie Karahalios,et al.  "Be Careful; Things Can Be Worse than They Appear": Understanding Biased Algorithms and Users' Behavior Around Them in Rating Platforms , 2017, ICWSM.

[23]  Alan Cooper,et al.  The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity (2nd Edition) , 1999 .

[24]  Bernard J. Jansen,et al.  Confusion and information triggered by photos in persona profiles , 2019, Int. J. Hum. Comput. Stud..

[25]  Jan Stage,et al.  A Template for Design Personas: Analysis of 47 Persona Descriptions from Danish Industries and Organizations , 2015, Int. J. Sociotechnology Knowl. Dev..

[26]  Jeanna Neefe Matthews,et al.  Toward algorithmic transparency and accountability , 2017, Commun. ACM.

[27]  Yvonne Dittrich,et al.  Personas is not applicable: local remedies interpreted in a wider context , 2004, PDC 04.

[28]  Daniel Neyland,et al.  Bearing Account-able Witness to the Ethical Algorithmic System , 2016 .

[29]  Bernard J. Jansen,et al.  Imaginary People Representing Real Numbers , 2018, ACM Trans. Web.

[30]  Bernard J. Jansen,et al.  Automatic Persona Generation (APG): A Rationale and Demonstration , 2018, CHIIR.

[31]  Mike Ananny,et al.  Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability , 2018, New Media Soc..

[32]  Bernard J. Jansen,et al.  Design Issues in Automatically Generated Persona Profiles: A Qualitative Analysis from 38 Think-Aloud Transcripts , 2019, CHIIR.

[33]  Sorelle A. Friedler,et al.  Hiring by Algorithm: Predicting and Preventing Disparate Impact , 2016 .

[34]  Bernard J. Jansen,et al.  Automatic Persona Generation for Online Content Creators: Conceptual Rationale and a Research Agenda , 2019, Personas - User Focused Design.

[35]  Anupam Chander The Racist Algorithm , 2016 .

[36]  Ricardo Baeza-Yates,et al.  FA*IR: A Fair Top-k Ranking Algorithm , 2017, CIKM.

[37]  Bernard J. Jansen,et al.  Personas Changing Over Time: Analyzing Variations of Data-Driven Personas During a Two-Year Period , 2019, CHI Extended Abstracts.

[38]  Mike Ananny,et al.  Toward an Ethics of Algorithms , 2016 .

[39]  Casey Fiesler,et al.  “Participant” Perceptions of Twitter Research Ethics , 2018 .

[40]  Bernard J. Jansen,et al.  “Is More Better?”: Impact of Multiple Photos on Perception of Persona Profiles , 2018, CHI.

[41]  Bernard J. Jansen,et al.  Customer segmentation using online platforms: isolating behavioral and demographic segments for persona creation via aggregated user data , 2018, Social Network Analysis and Mining.

[42]  Chang-Tien Lu,et al.  Outlier Detection , 2008, Encyclopedia of GIS.

[43]  Serge Abiteboul,et al.  Data Responsibly: Fairness, Neutrality and Transparency in Data Analysis , 2016, EDBT.

[44]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[45]  Susan Turner,et al.  Is stereotyping inevitable when designing with personas , 2011 .

[46]  Jon Brickey,et al.  A Comparative Analysis of Persona Clustering Methods , 2010, AMCIS.

[47]  Thomas B. Sheridan,et al.  Computer-aided group decision making: Theory and practice , 1974 .

[48]  Nicholas Diakopoulos,et al.  Algorithmic Transparency in the News Media , 2017 .

[49]  Murray R. Spiegel,et al.  Theory and problems of statistics .... , 2014 .

[50]  H. Kim,et al.  A Factor Analysis Approach to Persona Development using Survey Data , 2017 .

[51]  Bernard J. Jansen,et al.  Persona Transparency: Analyzing the Impact of Explanations on Perceptions of Data-Driven Personas , 2019, Int. J. Hum. Comput. Interact..

[52]  Karin Slegers,et al.  Using correspondence analysis to monitor the persona segmentation process , 2012, NordiCHI.

[53]  Dimitris N. Chorafas Control systems functions and programming approaches , 1966 .

[54]  Bernard J. Jansen,et al.  Findings of a User Study of Automatically Generated Personas , 2018, CHI Extended Abstracts.

[55]  Nicola Marsden,et al.  Stereotypes and Politics: Reflections on Personas , 2016, CHI.

[56]  Paul F. M. J. Verschure,et al.  Latent Morality in Algorithms and Machines , 2019, Living Machines.

[57]  Lene Nielsen,et al.  Personas - User Focused Design , 2012, Human–Computer Interaction Series.

[58]  Xiang Zhang,et al.  Data-driven Personas: Constructing Archetypal Users with Clickstreams and User Telemetry , 2016, CHI.

[59]  R. Fisher Social Desirability Bias and the Validity of Indirect Questioning , 1993 .

[60]  John S. Pruitt,et al.  The Persona Lifecycle: Keeping People in Mind Throughout Product Design , 2006 .

[61]  Chris Chapman,et al.  Quantitative Evaluation of Personas as Information , 2008 .

[62]  René F. Kizilcec,et al.  How Much Information?: Effects of Transparency on Trust in an Algorithmic Interface , 2016, CHI.

[63]  Bernard J. Jansen,et al.  A Literature Review of Quantitative Persona Creation , 2020, CHI.

[64]  Bernard J. Jansen,et al.  The Future of Data-driven Personas: A Marriage of Online Analytics Numbers and Human Attributes , 2019, ICEIS.

[65]  Bernard J. Jansen,et al.  The effect of numerical and textual information on visual engagement and perceptions of AI-driven persona interfaces , 2020, IUI.

[66]  Malte Ziewitz Governing Algorithms , 2016 .

[67]  Pablo J. Boczkowski,et al.  The Relevance of Algorithms , 2013 .

[68]  Steve Whittaker,et al.  How do designers and user experience professionals actually perceive and use personas? , 2012, CHI.

[69]  Richard Wesley Hamming,et al.  One Man's View of Computer Science , 1969, JACM.

[70]  Francesco Bonchi,et al.  Algorithmic Bias: From Discrimination Discovery to Fairness-aware Data Mining , 2016, KDD.

[71]  Jonathan Grudin,et al.  Personas: practice and theory , 2003, DUX '03.

[72]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[73]  John M. Carroll,et al.  Creating Persona Skeletons from Imbalanced Datasets - A Case Study using U.S. Older Adults' Health Data , 2019, Conference on Designing Interactive Systems.

[74]  Kang-Hee Lee,et al.  TapSix: A Palm-Worn Glove with a Low-Cost Camera Sensor that Turns a Tactile Surface into a Six-Key Chorded Keyboard by Detection Finger Taps , 2020, Int. J. Hum. Comput. Interact..

[75]  Margaret M. Burnett,et al.  Gender-Inclusiveness Personas vs. Stereotyping: Can We Have it Both Ways? , 2017, CHI.

[76]  Noah A. Smith,et al.  Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) , 2016, ACL 2016.

[77]  Jianfeng Gao,et al.  A Persona-Based Neural Conversation Model , 2016, ACL.

[78]  Alan Cooper,et al.  The Inmates are Running the Asylum , 1999, Software-Ergonomie.