A systematic intermolecular potential method applied to chlorine

A systematic method is described for finding effective model intermolecular pair potentials to use in realistic simulations of condensed phases. The pair potential is split up into electrostatic, dispersion and repulsion components, all of which may be parametrized by using ab initio monomer wavefunctions. The repulsion energy is estimated by a novel method that assumes proportionality to the overlap between the unperturbed charge densities. The resulting model includes atom-atom anisotropy in all three components of the potential in a realistic, theoretically justified manner. One parameter has to be obtained from elsewhere, in this case by fitting to solid state data. More parameters can be adjusted in order to absorb errors such as the neglect of many-body effects. Application of this method to chlorine gives a model with four fitted parameters that predicts many properties of the solid and liquid at least as accurately as the best modern potential, which has eight fitted parameters.

[1]  C. Rao,et al.  A Monte Carlo study of crystal structure transformations , 1985 .

[2]  J. A. Barker,et al.  Liquid argon: Monte carlo and molecular dynamics calculations , 1971 .

[3]  T. Yokoyama,et al.  Raman Spectrum and Intermolecular Forces of the Chlorine Crystal , 1969 .

[4]  R. J. Harrison,et al.  An ab initio distributed multipole study of the electrostatic potential around an undecapeptide cyclosporin derivative and a comparison with point charge electrostatic models , 1989 .

[5]  W. Person,et al.  Intensities of the Infrared‐Active Lattice Vibrations of Halogen Crystals , 1968 .

[6]  J. Venables,et al.  The structure of the diatomic molecular solids , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  R. L. Mills,et al.  alpha-gamma Transition in Solid Nitrogen and Carbon Monoxide at High Pressure , 1971 .

[8]  M. Alderton,et al.  Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry , 1984 .

[9]  A. Stone,et al.  The intermolecular potential of chlorine , 1988 .

[10]  O. Schnepp,et al.  Empirical intermolecular potentials for N2 and CO2 from crystal data , 1973 .

[11]  A. Anderson,et al.  Raman spectra of molecular crystals I. Chlorine, bromine, and iodine , 1970 .

[12]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[13]  S. Price,et al.  An overlap model for estimating the anisotropy of repulsion , 1990 .

[14]  Sow-Hsin Chen,et al.  Lattice dynamics of halogen crystals , 1981 .

[15]  M. Donkersloot,et al.  Lattice dynamics of simple molecular crystals , 1970 .

[16]  W. Giauque,et al.  Chlorine. The Heat Capacity, Vapor Pressure, Heats of Fusion and Vaporization, and Entropy , 1939 .

[17]  A. Stone The description of bimolecular potentials, forces and torques: the S and V function expansions , 1978 .

[18]  D. Rocca,et al.  A Monte Carlo simulation study of liquid chlorine , 1987 .

[19]  Sow-Hsin Chen,et al.  An interatomic potential model for halogen crystals , 1982 .

[20]  A. Stone,et al.  Local and non-local dispersion models , 1989 .

[21]  A. Stone,et al.  Atomic anisotropy and the structure of liquid chlorine , 1987 .

[22]  W. Wong-Ng,et al.  Anisotropic atom–atom forces and the space group of solid chlorine , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  C. Murthy,et al.  Crystal structure and lattice dynamics of chlorine The role of electrostatic and anisotropic atom-atom potentials , 1982 .

[24]  D. Williams,et al.  Transferability of nonbonded Cl⋯Cl potential energy function to crystalline chlorine , 1985 .

[25]  H. G. Smith,et al.  Lattice and Molecular Vibrations in Single Crystal I2 at 77 K by Inelastic Neutron Scattering , 1975 .

[26]  A. Anderson,et al.  Far infra-red spectra of molecular crystals , 1964 .

[27]  I. R. Mcdonald,et al.  Electrostatic interactions in molecular crystals , 1983 .

[28]  A. Warshel,et al.  Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes , 1970 .

[29]  K. Gubbins,et al.  Equilibrium properties of the Gaussian overlap fluid. Monte Carlo simulation and thermodynamic perturbation theory , 1983 .

[30]  A. Stone,et al.  THE ANISOTROPY OF THE CL2-CL2 PAIR POTENTIAL AS SHOWN BY THE CRYSTAL-STRUCTURE - EVIDENCE FOR INTERMOLECULAR BONDING OR LONE PAIR EFFECTS , 1982 .

[31]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[32]  Maurice Rigby,et al.  Towards an intermolecular potential for nitrogen , 1984 .

[33]  G. E. Leroi,et al.  Raman Spectra of Solid Chlorine and Bromine , 1969 .

[34]  S. C. Nyburg Intermolecular Forces and the Space Group of Solid Chlorine , 1964 .

[35]  Ryan,et al.  Quantum Monte Carlo calculation of the thermodynamic functions of a Lennard-Jones chain of atoms. , 1989, Physical review. B, Condensed matter.

[36]  G. Karlström,et al.  Monte Carlo simulations of liquid and solid nitrogen based on an abinitio MO–LCAO–SCF–CI potential , 1981 .

[37]  K. Noda,et al.  Repulsive potentials for Cl−–R and Br−–R (R=He, Ne, and Ar) derived from beam experiments , 1976 .

[38]  F. Sacchetti,et al.  The structure of liquid chlorine , 1983 .

[39]  Keith E. Gubbins,et al.  Theory of molecular fluids , 1984 .

[40]  K. Heal,et al.  The temperature dependence of the crystal structures of the solid halogens, bromine and chlorine , 1984 .

[41]  H. S. Green The Quantum Mechanics of Assemblies of Interacting Particles , 1951 .

[42]  R. Buckingham,et al.  The Classical Equation of State of Gaseous Helium, Neon and Argon , 1938 .

[43]  A. Stroud Approximate calculation of multiple integrals , 1973 .