Exact and efficient simulation of concordant computation

Concordant computation is a circuit-based model of quantum computation for mixed states, that assumes that all correlations within the register are discord-free (i.e. the correlations are essentially classical) at every step of the computation. The question of whether concordant computation always admits efficient simulation by a classical computer was first considered by B. Eastin in quant-ph/1006.4402v1, where an answer in the affirmative was given for circuits consisting only of one- and two-qubit gates. Building on this work, we develop the theory of classical simulation of concordant computation. We present a new framework for understanding such computations, argue that a larger class of concordant computations admit efficient simulation, and provide alternative proofs for the main results of quant-ph/1006.4402v1 with an emphasis on the exactness of simulation which is crucial for this model. We include detailed analysis of the arithmetic complexity for solving equations in the simulation, as well as extensions to larger gates and qudits. We explore the limitations of our approach, and discuss the challenges faced in developing efficient classical simulation algorithms for all concordant computations.

[1]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[2]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[3]  T. Ralph,et al.  Adding control to arbitrary unknown quantum operations , 2010, Nature communications.

[4]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[5]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[6]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[7]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[8]  M. Mosca,et al.  Approximating fractional time quantum evolution , 2008, 0810.3843.

[9]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[10]  Quantum algorithm for finding periodicities in the spectrum of a black-box Hamiltonian or unitary transformation , 2001, quant-ph/0108053.

[11]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[12]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[13]  Chi-Kwong Li,et al.  The Arithmetic of Algebraic Numbers: an Elementary Approach , 2004 .

[14]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[15]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[16]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[18]  Maarten Van den Nest,et al.  Universal quantum computation with little entanglement. , 2012, Physical review letters.

[19]  J. Oppenheim,et al.  Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.

[20]  Pruet Kalasuwan,et al.  Calculating unknown eigenvalues with a quantum algorithm , 2011, Nature Photonics.

[21]  G. D’Ariano,et al.  Quantum computation with programmable connections between gates , 2011, 1109.5987.

[22]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[23]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[24]  V. Vedral,et al.  Quantum Computing with black-box Subroutines , 2013, 1310.2927.

[25]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[26]  Nicholas A. Loehr Advanced Linear Algebra , 2014 .

[27]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[28]  G Chiribella,et al.  Quantum circuit architecture. , 2007, Physical review letters.

[29]  S. Luo Quantum discord for two-qubit systems , 2008 .

[30]  N. Linden,et al.  Parts of quantum states , 2004, quant-ph/0407117.

[31]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[33]  Matty J Hoban,et al.  Measurement-based classical computation. , 2013, Physical review letters.

[34]  Lin Chen,et al.  Detecting multipartite classical states and their resemblances , 2010, 1005.4348.

[35]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[36]  Dan Stahlke,et al.  Quantum interference as a resource for quantum speedup , 2013, 1305.2186.

[37]  W. H. Zurek,et al.  Einselection and decoherence from an information theory perspective , 2000, Annalen der Physik.

[38]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Mário Ziman,et al.  Programmable Quantum Gate Arrays , 2001 .

[40]  Joel J. Wallman,et al.  Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.

[41]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[42]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[43]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[44]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[45]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[46]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[47]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.