Exact and efficient simulation of concordant computation
暂无分享,去创建一个
[1] Alexei Y. Kitaev,et al. Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..
[2] D. Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.
[3] T. Ralph,et al. Adding control to arbitrary unknown quantum operations , 2010, Nature communications.
[4] J Eisert,et al. Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.
[5] T. Paterek,et al. The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.
[6] A. Acín,et al. Almost all quantum states have nonclassical correlations , 2009, 0908.3157.
[7] A. Datta,et al. Entanglement and the power of one qubit , 2005, quant-ph/0505213.
[8] M. Mosca,et al. Approximating fractional time quantum evolution , 2008, 0810.3843.
[9] Maarten Van den Nest,et al. Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..
[10] Quantum algorithm for finding periodicities in the spectrum of a black-box Hamiltonian or unitary transformation , 2001, quant-ph/0108053.
[11] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[12] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[13] Chi-Kwong Li,et al. The Arithmetic of Algebraic Numbers: an Elementary Approach , 2004 .
[14] W. Zurek,et al. Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.
[15] Č. Brukner,et al. Quantum correlations with no causal order , 2011, Nature Communications.
[16] R. Jozsa,et al. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[17] B. Valiron,et al. Quantum computations without definite causal structure , 2009, 0912.0195.
[18] Maarten Van den Nest,et al. Universal quantum computation with little entanglement. , 2012, Physical review letters.
[19] J. Oppenheim,et al. Thermodynamical approach to quantifying quantum correlations. , 2001, Physical review letters.
[20] Pruet Kalasuwan,et al. Calculating unknown eigenvalues with a quantum algorithm , 2011, Nature Photonics.
[21] G. D’Ariano,et al. Quantum computation with programmable connections between gates , 2011, 1109.5987.
[22] Animesh Datta,et al. Quantum discord and the power of one qubit. , 2007, Physical review letters.
[23] F. Verstraete,et al. Quantum Metropolis sampling , 2009, Nature.
[24] V. Vedral,et al. Quantum Computing with black-box Subroutines , 2013, 1310.2927.
[25] V. Vedral,et al. Classical, quantum and total correlations , 2001, quant-ph/0105028.
[26] Nicholas A. Loehr. Advanced Linear Algebra , 2014 .
[27] W. Wootters,et al. A single quantum cannot be cloned , 1982, Nature.
[28] G Chiribella,et al. Quantum circuit architecture. , 2007, Physical review letters.
[29] S. Luo. Quantum discord for two-qubit systems , 2008 .
[30] N. Linden,et al. Parts of quantum states , 2004, quant-ph/0407117.
[31] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[32] Marco Barbieri,et al. Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .
[33] Matty J Hoban,et al. Measurement-based classical computation. , 2013, Physical review letters.
[34] Lin Chen,et al. Detecting multipartite classical states and their resemblances , 2010, 1005.4348.
[35] G. Chiribella. Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.
[36] Dan Stahlke,et al. Quantum interference as a resource for quantum speedup , 2013, 1305.2186.
[37] W. H. Zurek,et al. Einselection and decoherence from an information theory perspective , 2000, Annalen der Physik.
[38] R. Jozsa,et al. On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[39] Mário Ziman,et al. Programmable Quantum Gate Arrays , 2001 .
[40] Joel J. Wallman,et al. Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.
[41] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[42] Scott Aaronson,et al. The Computational Complexity of Linear Optics , 2013, Theory Comput..
[43] Č. Brukner,et al. Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.
[44] G. D’Ariano,et al. Theoretical framework for quantum networks , 2009, 0904.4483.
[45] Peter W. Shor,et al. Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..
[46] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[47] Gus Gutoski,et al. Toward a general theory of quantum games , 2006, STOC '07.