A Big Bang model of human colorectal tumor growth

[1]  S. Gestl,et al.  Tumor cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers , 2014, Nature.

[2]  Robin L. Jones,et al.  Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. , 2014, Cell reports.

[3]  James D. Brenton,et al.  Phylogenetic Quantification of Intra-tumour Heterogeneity , 2013, PLoS Comput. Biol..

[4]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[5]  R. Poulsom,et al.  Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution , 2013, Proceedings of the National Academy of Sciences.

[6]  Carissa A. Sanchez,et al.  NSAIDs Modulate Clonal Evolution in Barrett's Esophagus , 2013, PLoS genetics.

[7]  David Basanta,et al.  Exploiting ecological principles to better understand cancer progression and treatment , 2013, Interface Focus.

[8]  Jeffrey J Meyer,et al.  Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012. (5) , 2013 .

[9]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[10]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[11]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[12]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[13]  C. Swanton,et al.  Modelling the evolution of genetic instability during tumour progression , 2012, Evolutionary applications.

[14]  Shamil R. Sunyaev,et al.  Impact of deleterious passenger mutations on cancer progression , 2012, Proceedings of the National Academy of Sciences.

[15]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[16]  Andrea Sottoriva,et al.  Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. , 2013, Cancer research.

[17]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[18]  Johannes G. Reiter,et al.  The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers , 2012, Nature.

[19]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[20]  Melanie J. I. Müller,et al.  Selective sweeps in growing microbial colonies , 2012, Physical biology.

[21]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[22]  Paul T. Spellman,et al.  Parent-specific copy number in paired tumor-normal studies using circular binary segmentation , 2011, Bioinform..

[23]  Larry Norton,et al.  Clinical implications of cancer self-seeding , 2011, Nature Reviews Clinical Oncology.

[24]  C. Maley,et al.  Accurate Reconstruction of the Temporal Order of Mutations in Neoplastic Progression , 2011, Cancer Prevention Research.

[25]  Hans Clevers,et al.  The cancer stem cell: premises, promises and challenges , 2011, Nature Medicine.

[26]  K. Anderson,et al.  Genetic variegation of clonal architecture and propagating cells in leukaemia , 2011, Nature.

[27]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[28]  Allon M Klein,et al.  Intestinal Stem Cell Replacement Follows a Pattern of Neutral Drift , 2010, Science.

[29]  K. Korolev,et al.  Genetic demixing and evolution in linear stepping stone models. , 2010, Reviews of modern physics.

[30]  I. Tomlinson,et al.  Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. , 2010, Gastroenterology.

[31]  M. Gönen,et al.  Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. , 2010, The Journal of clinical investigation.

[32]  H. Ohtsuki,et al.  Accumulation of driver and passenger mutations during tumor progression , 2009, Proceedings of the National Academy of Sciences.

[33]  J. Salk Clonal evolution in cancer , 2010 .

[34]  Simon Tavaré,et al.  Integrating Approximate Bayesian Computation with Complex Agent-Based Models for Cancer Research , 2010, COMPSTAT.

[35]  J. Troge,et al.  Inferring tumor progression from genomic heterogeneity. , 2010, Genome research.

[36]  S. McWeeney,et al.  Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. , 2010, Cancer research.

[37]  S. Tavaré,et al.  Many colorectal cancers are “flat” clonal expansions , 2009, Cell cycle.

[38]  Paul Marjoram,et al.  Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers , 2009, Proceedings of the National Academy of Sciences.

[39]  Hans Clevers,et al.  Crypt stem cells as the cells-of-origin of intestinal cancer , 2009, Nature.

[40]  Johan Staaf,et al.  Normalization of Illumina Infinium whole-genome SNP data improves copy number estimates and allelic intensity ratios , 2008, BMC Bioinformatics.

[41]  Anthony Rhodes,et al.  American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. , 2006, Archives of pathology & laboratory medicine.

[42]  S. Tavaré,et al.  Modern computational approaches for analysing molecular genetic variation data , 2006, Nature Reviews Genetics.

[43]  H. Heng,et al.  Stochastic cancer progression driven by non‐clonal chromosome aberrations , 2006, Journal of cellular physiology.

[44]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[45]  R. Axelrod,et al.  Evolutionary Dynamics , 2004 .

[46]  E. Lander,et al.  A molecular signature of metastasis in primary solid tumors , 2003, Nature Genetics.

[47]  Martin A. Nowak,et al.  The role of chromosomal instability in tumor initiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E Georg Luebeck,et al.  Multistage carcinogenesis and the incidence of colorectal cancer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Poulsom,et al.  Top down or bottom up? Competing management structures in the morphogenesis of colorectal neoplasms , 2002, Gut.

[50]  Robert A. Weinberg,et al.  Metastasis genes: A progression puzzle , 2002, Nature.

[51]  S. Tavaré,et al.  Investigating stem cells in human colon by using methylation patterns , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Rosenberg Evolving responsively: adaptive mutation , 2001, Nature Reviews Genetics.

[53]  N. Wright,et al.  Field cancerization, clonality, and epithelial stem cells: the spread of mutated clones in epithelial sheets , 1999, The Journal of pathology.

[54]  K. Kinzler,et al.  Genetic instability in colorectal cancers , 1997, Nature.

[55]  P. Foster Adaptive mutation. , 1994, Science.

[56]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.