Structural enhancement of Na3V2(PO4)(3)/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries

Structurally stabilized Na3V2(PO4)3/C composite cathode materials with excellent electrochemical performance can be obtained by incorporating functional pillar ions into the structure. As pillar ions, K-ions have a larger ionic radius compared to Na-ions, and play an important role in enlarging the Na-ion diffusion pathway and in increasing the lattice volume by elongating the c-axis, thereby improving the rate performance. Furthermore, since the incorporated K-ions rarely participate in the electrochemical extraction/insertion reactions, they can stabilize the Na3V2(PO4)3 structure by suppressing significant lattice volume changes or structural distortion, even in a wide range of voltage windows accompanying multiple transitions of V ions and phase distortions. We investigated how the K-ion doping level affected the crystal structure and electrochemical properties of Na3V2(PO4)3 cathode materials for Na-ion batteries.

[1]  Ji-Won Jung,et al.  Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. , 2014, Nanoscale.

[2]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[3]  Hong Wang,et al.  Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries , 2010 .

[4]  Su Han Park,et al.  The effects of Na doping on performance of layered Li1.1 − xNax[Ni0.2Co0.3Mn0.4]O2 materials for lithium secondary batteries , 2006 .

[5]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[6]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[7]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[8]  M. Morcrette,et al.  In Situ X-Ray Diffraction during Lithium Extraction from Rhombohedral and Monoclinic Li3 V 2 ( PO 4 ) 3 , 2003 .

[9]  Xiaobo Ji,et al.  Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability , 2014 .

[10]  Craig E. Banks,et al.  Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries , 2014 .

[11]  Xiaobo Ji,et al.  A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[12]  Xiaobo Ji,et al.  First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3 , 2014 .

[13]  Jun Chen,et al.  Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries , 2014 .

[14]  Yan Yu,et al.  Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. , 2014, Nanoscale.

[15]  Zhiyong Liang,et al.  Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries , 2011 .

[16]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[17]  Nikolai Uvarov,et al.  Electrochemical behavior of Li3−xM′xV2−yM″y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti)/C composite cathode material for lithium-ion batteries , 2011 .

[18]  L. Wang,et al.  Synthesis and electrochemical properties of yttrium-doped LiMn0.98Y0.02O2 for lithium secondary batteries , 2006 .

[19]  R. Holze,et al.  Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries , 2002 .

[20]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[21]  Xiaobo Ji,et al.  A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. , 2014, Physical chemistry chemical physics : PCCP.

[22]  K. Du,et al.  Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries , 2013 .

[23]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[24]  Y. Katayama,et al.  Preparation and characteristics of (NayAg1-y)2V4O11 for lithium secondary battery cathodes , 1998 .

[25]  Pierre Kubiak,et al.  High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x , 2012 .

[26]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[27]  Won‐Hee Ryu,et al.  Electrochemical properties of nanosized Li-rich layered oxide as positive electrode materials for Li-Ion batteries , 2013 .

[28]  Hui Wang,et al.  Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries , 2014 .

[29]  Igor V. Zatovsky,et al.  NASICON-type Na3V2(PO4)3 , 2010, Acta crystallographica. Section E, Structure reports online.

[30]  Yong‐Mook Kang,et al.  Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating , 2007 .

[31]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[32]  Li3V2(PO4)3 cathode material synthesized by chemical reduction and lithiation method , 2009 .

[33]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[34]  Yong‐Mook Kang,et al.  Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials , 2009 .

[35]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[36]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[37]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[38]  Xiaobo Ji,et al.  Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries , 2014 .

[39]  Dongwook Han,et al.  Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries. , 2014, ChemSusChem.

[40]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[41]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[42]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[43]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[44]  Ouyang Chuying,et al.  First Principles Study on Na x Li 1-x FePO 4 As Cathode Material for Rechargeable Lithium Batteries , 2006 .

[45]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[46]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[47]  Yong‐Mook Kang,et al.  Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials , 2007 .

[48]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[49]  Zhenguo Yang,et al.  LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. , 2010, Nano letters.

[50]  Li Liu,et al.  Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries , 2012 .

[51]  M. Whittingham,et al.  Electrical Properties of the Layered Manganese Dioxides M x Mn1 − y Co y O 2, M = Na , K , 1999 .

[52]  Dongwook Han,et al.  Tailoring crystal structure and morphology of LiFePO₄/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO₄ seed crystals. , 2013, ACS applied materials & interfaces.

[53]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[54]  M. Whittingham,et al.  Cathodic Behavior of Alkali Manganese Oxides from Permanganate , 1997 .

[55]  Dongwook Han,et al.  Effects of Cl doping on the structural and electrochemical properties of high voltage LiMn1.5Ni0.5O4 cathode materials for Li-ion batteries , 2014 .

[56]  Zhixing Wang,et al.  Comparative investigations of LiVPO4F/C and Li3V2(PO4)3/C synthesized in similar soft chemical route , 2012, Journal of Solid State Electrochemistry.

[57]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[58]  Wensheng Yang,et al.  Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries. , 2013, Chemistry.

[59]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[60]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[61]  Jun-ichi Yamaki,et al.  Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries , 2009 .

[62]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[63]  S. Okada,et al.  Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery , 2012 .

[64]  Do-Hwan Nam,et al.  Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries , 2014 .

[65]  L. J. Fu,et al.  Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries , 2006 .

[66]  J. Dahn,et al.  NaCrO2 is a Fundamentally Safe Positive Electrode Material for Sodium-Ion Batteries with Liquid Electrolytes , 2012 .

[67]  D. K. Kim,et al.  Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries , 2013 .

[68]  H. Jang,et al.  Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black , 2006 .

[69]  Lin Gu,et al.  Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium‐Ion Batteries , 2014 .

[70]  Lixia Yuan,et al.  Effects of Na+ and Cl− co-doping on electrochemical performance in LiFePO4/C , 2011 .

[71]  Changsong Dai,et al.  A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2−2x/3)Nix(PO4)3/C , 2013 .

[72]  Yifu Yang,et al.  Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries , 2009 .