Genome System Architecture and Natural Genetic Engineering

Molecular genetics reveals three aspects of genome organization and reorganization that provide opportunities for formulating new views of the evolutionary process: 1 Organization of the genome as a hierarchy of systems (not units) determining many aspects of genetic function (only some of which are specifying protein and RNA sequences); 2 The presence of many repetitive DNA elements in the genome which do not encode protein or RNA structure but serve as the physical basis for functional integration; and 3 The operation of regulated cellular natural genetic engineering systems capable of rearranging basic genomic components throughout the genome in a single cell generation.

[1]  R. Britten,et al.  Mobile elements inserted in the distant past have taken on important functions. , 1997, Gene.

[2]  P. Foster Adaptive mutation: the uses of adversity. , 1993, Annual review of microbiology.

[3]  Mobile Genetic Elements , 1983 .

[4]  G. Rubin,et al.  Transformation of white locus DNA in Drosophila: Dosage compensation, zeste interaction, and position effects , 1984, Cell.

[5]  R. Britten,et al.  Repeated Sequences in DNA , 1968 .

[6]  A. Sonnenberg,et al.  The regulation of expression of mouse mammary tumor virus DNA by steroid hormones and growth factors. , 1989, Journal of steroid biochemistry.

[7]  F. Baquero,et al.  H-NS and RpoS regulate emergence of Lac Ara+ mutants of Escherichia coli MCS2 , 1997, Journal of bacteriology.

[8]  A. Bucheton,et al.  I Elements in Drosophila melanogaster , 2002 .

[9]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[10]  H. Willard,et al.  Formation of de novo centromeres and construction of first-generation human artificial microchromosomes , 1997, Nature Genetics.

[11]  D M Prescott,et al.  The unusual organization and processing of genomic DNA in hypotrichous ciliates. , 1992, Trends in genetics : TIG.

[12]  J A Shapiro Genomes as smart systems , 2004, Genetica.

[13]  J. Shapiro,et al.  Genome organization, natural genetic engineering and adaptive mutation. , 1997, Trends in genetics : TIG.

[14]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[15]  A. Dowsett Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences , 2004, Chromosoma.

[16]  R. Jaenisch,et al.  Retrovirus genomes methylated by mammalian but not bacterial methylase are non-infectious , 1983, Nature.

[17]  G. Karpen,et al.  Position-effect variegation and the new biology of heterochromatin. , 1994, Current opinion in genetics & development.

[18]  B. Mcclintock Intranuclear systems controlling gene action and mutation. , 1956, Brookhaven symposia in biology.

[19]  G. Karpen,et al.  Centric Heterochromatin and the Efficiency of Achiasmate Disjunction in Drosophila Female Meiosis , 1996, Science.

[20]  B. Mcclintock Mechanisms that rapidly reorganize the genome , 1978 .

[21]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[22]  J. Shapiro Observations on the formation of clones containing araB-lacZ cistron fusions , 2004, Molecular and General Genetics MGG.

[23]  W. Reznikoff,et al.  The lactose operon‐controlling elements: a complex paradigm , 1992, Molecular microbiology.

[24]  P. Philippsen,et al.  Preferential integration of yeast transposable element Ty into a promoter region , 1984, Nature.

[25]  M. Fauvarque,et al.  polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. , 1993, Genes & development.

[26]  J. Shapiro Genome System Architecture and Natural Genetic Engineering in Evolution , 1999, Annals of the New York Academy of Sciences.

[27]  J. Tomb,et al.  Role of the two-component signal transduction and the phosphoenolpyruvate: carbohydrate phosphotransferase systems in competence development of Haemophilus influenzae Rd , 1996, Journal of Bacteriology.

[28]  A. Wilkins,et al.  The evolution of 'bricolage'. , 1998, Trends in genetics : TIG.

[29]  T. Cech RNA splicing: Three themes with variations , 1983, Cell.

[30]  H. Willard,et al.  Centromeres of mammalian chromosomes. , 1990, Trends in genetics : TIG.

[31]  N. Fedoroff,et al.  Epigenetic regulation of the maize Spm transposon , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  S Henikoff,et al.  Something from nothing: the evolution and utility of satellite repeats. , 1998, Trends in genetics : TIG.

[33]  J. Sedat,et al.  Direct Evidence of a Role for Heterochromatin in Meiotic Chromosome Segregation , 1996, Cell.

[34]  E. Blackburn,et al.  Structure and function of telomeres , 1991, Nature.

[35]  R. Doolittle The multiplicity of domains in proteins. , 1995, Annual review of biochemistry.

[36]  D. Bray,et al.  Intracellular signalling as a parallel distributed process. , 1990, Journal of theoretical biology.

[37]  J. Shapiro THE DISCOVERY AND SIGNIFICANCE OF MOBILE GENETIC ELEMENTS , 1995 .

[38]  Nina V. Fedoroff,et al.  The discovery and characterization of transposable elements. The collected papers of Barbara McClintock New York: Garland Publishing, Inc. (1987). 636 pp. $75.00 , 1988, Cell.

[39]  B. Mcclintock The control of gene action in maize , 1965 .

[40]  P. L. Deininger,et al.  SINEs: Short interspersed repeated DNA elements in higher eucaryotes. , 1989 .

[41]  Maclyn McCarty,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.

[42]  S. Sandmeyer,et al.  Ty3 transposes in mating populations of yeast: a novel transposition assay for Ty3. , 1995, Genetics.

[43]  J. Shapiro,et al.  Starvation‐induced Mucts62‐mediated coding sequence fusion: a role for ClpXP, Lon, RpoS and Crp , 1999, Molecular microbiology.

[44]  G. Natsoulis,et al.  Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences , 1993, Cell.

[45]  J. Shapiro,et al.  Natural genetic engineering in evolution , 2004, Genetica.

[46]  O. Avery,et al.  STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES , 1944, The Journal of experimental medicine.

[47]  J. Elder,et al.  Concerted Evolution of Repetitive DNA Sequences in Eukaryotes , 1995, The Quarterly Review of Biology.

[48]  D. Prescott,et al.  Origin, evolution, and excision of internal elimination segments in germline genes of ciliates. , 1997, Current opinion in genetics & development.

[49]  N. Perrimon,et al.  Altering the insertional specificity of a Drosophila transposable element. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Epplen,et al.  Exploiting the informativity of 'meaningless' simple repetitive DNA from indirect gene diagnosis to multilocus genome scanning. , 1994, Biological chemistry Hoppe-Seyler.

[51]  B. Mcclintock,et al.  Chromosome organization and genic expression. , 1951, Cold Spring Harbor symposia on quantitative biology.

[52]  A. Grossman Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. , 1995, Annual review of genetics.

[53]  F. Alt,et al.  Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. , 1989, Annual review of genetics.

[54]  M. G. Kidwell,et al.  CHAPTER 9 – Hybrid Dysgenesis Determinants , 1983 .

[55]  S. Henikoff,et al.  Position effect and related phenomena. , 1992, Current opinion in genetics & development.

[56]  J. Shapiro,et al.  A role for the Clp protease in activating Mu-mediated DNA rearrangements , 1993, Journal of bacteriology.

[57]  Jeffrey H. Miller Structure of a paradigm , 1996, Nature Structural Biology.

[58]  D. Rio Regulation of Drosophila P element transposition. , 1991, Trends in genetics : TIG.

[59]  S. Sandmeyer,et al.  Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element , 1995, Science.

[60]  S. Beermann The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda) , 1977, Chromosoma.

[61]  T. Kornberg,et al.  Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. , 1990, Genes & development.

[62]  B. Errede,et al.  ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of tyl repetitive elements , 1980 .

[63]  M. Mergeay,et al.  Stress and Survival in Alcaligenes eutrophus CH34: Effects of Temperature and Genetic Rearrangements. , 1992 .

[64]  Eugene W. Myers,et al.  Identifying Satellites and Periodic Repetitions in Biological Sequences , 1998, J. Comput. Biol..

[65]  M. Gauthier Gene Transfers and Environment , 1992, Springer Berlin Heidelberg.

[66]  D. Voytas,et al.  The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. , 1996, Genes & development.

[67]  J. Brosius,et al.  Retroposons--seeds of evolution. , 1991, Science.

[68]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 1859 .

[69]  F. Crick,et al.  Genetical Implications of the Structure of Deoxyribonucleic Acid , 1953, Nature.

[70]  D. Finnegan The I factor and I-R hybrid dysgenesis in Drosophila melanogaster , 1989 .

[71]  B. Wakimoto,et al.  Heterochromatin and gene expression in Drosophila. , 1995, Annual review of genetics.

[72]  G. Dover,et al.  Molecular drive: a cohesive mode of species evolution , 1982, Nature.

[73]  J. Vrána,et al.  Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. , 1992, Genetics.