Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors.

As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).

[1]  Qixian Zhang,et al.  The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis , 2008 .

[2]  S. Jiang,et al.  Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells , 2010 .

[3]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[4]  Wensheng Yang,et al.  Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors , 2008 .

[5]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[6]  A. Matsuda,et al.  Structures and electrical properties of core–shell composite electrolytes with multi-heterointerfaces , 2007 .

[7]  Hsing-lin Wang,et al.  Reversal of Interfacial Dipole Orientation in Polyelectrolyte Superlattices Due to Polycationic Layers , 2000 .

[8]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[9]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[10]  Pan Mu,et al.  Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells , 2011 .

[11]  Shimshon Gottesfeld,et al.  Direct methanol fuel cells: progress in cell performance and cathode research , 2002 .

[12]  Maria Nowakowska,et al.  Novel Photoactive Polymeric Multilayer Films Formed via Electrostatic Self‐Assembly , 2005 .

[13]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[14]  S. Jiang,et al.  One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. , 2010, Chemical communications.

[15]  A. Durmuş,et al.  A novel approach for highly proton conductive electrolyte membranes with improved methanol barrier properties: Layer-by-Layer assembly of salt containing polyelectrolytes , 2009 .

[16]  Y. Shao-horn,et al.  Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors , 2011 .

[17]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[18]  M. Godino,et al.  Water and methanol transport in Nafion membranes with different cationic forms 1. Alkali monovalent cations , 2006 .

[19]  S. Jiang,et al.  Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation , 2008, Nanotechnology.

[20]  K. B. Blodgett,et al.  MONOMOLECULAR FILMS OF FATTY ACIDS ON GLASS , 1934 .

[21]  G. Lu,et al.  Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor , 2010 .

[22]  M. Xiao,et al.  The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells , 2009 .

[23]  M. Pan,et al.  Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes , 2010 .

[24]  S. Jiang,et al.  Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications , 2011 .

[25]  Chengzhou Zhu,et al.  Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[26]  Wan Ramli Wan Daud,et al.  Challenges and future developments in proton exchange membrane fuel cells , 2006 .

[27]  Horst Weller,et al.  Self-Organization of Cadmium Sulfide and Gold Nanoparticles by Electrostatic Interaction , 2002 .

[28]  Ulrich Wiesner,et al.  Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. , 2011, Chemical Society reviews.

[29]  A. S. Araujo,et al.  Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials , 2007, Nanotechnology.

[30]  G. Lu,et al.  Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films , 2009 .

[31]  S. Jiang,et al.  Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. , 2006, The journal of physical chemistry. B.

[32]  Hongfeng Xu,et al.  Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell , 2006 .

[33]  E. Olivetti,et al.  Anisotropic structure and transport in self-assembled layered polymer-clay nanocomposites. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[34]  P. Shen,et al.  Effect of support on the activity of Pd electrocatalyst for ethanol oxidation , 2006 .

[35]  Katsuhiko Ariga,et al.  Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. , 2007, Physical chemistry chemical physics : PCCP.

[36]  G. Prestwich,et al.  Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Jinwoo Lee,et al.  Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2 , 2010 .

[38]  Lianzhou Wang,et al.  Studies on mechanism of carbon nanotube and manganese oxide nanosheet self-sustained thin film for electrochemical capacitor , 2010 .

[39]  D. Bavykin,et al.  Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes , 2010 .

[40]  V. Birss,et al.  Sol-Gel Derived Pt-Ir Mixed Catalysts for DMFC Applications , 2004 .

[41]  F. Walsh,et al.  Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles , 2010 .

[42]  Michael F. Durstock,et al.  Dielectric Properties of Polyelectrolyte Multilayers , 2001 .

[43]  San Ping Jiang,et al.  Layer‐by‐Layer Self‐Assembly of Composite Polyelectrolyte–Nafion Membranes for Direct Methanol Fuel Cells , 2006 .

[44]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability , 2001 .

[45]  P. Topham,et al.  Block copolymer strategies for solar cell technology , 2011 .

[46]  Hao Jiang,et al.  Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors , 2011 .

[47]  Meng Yang,et al.  Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell , 2009 .

[48]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[49]  M. T. Colomer Nanoporous Anatase Thin Films as Fast Proton‐Conducting Materials , 2006 .

[50]  R. Iler,et al.  Multilayers of colloidal particles , 1966 .

[51]  H. Bönnemann,et al.  Model for Chainlength-Dependent Core−Surfactant Interaction in N(Alkyl)4Cl-Stabilized Colloidal Metal Particles Obtained from X-ray Absorption Spectroscopy , 2003 .

[52]  Jie Yin,et al.  Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method , 2011 .

[53]  Yuyan Shao,et al.  Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. , 2010, Angewandte Chemie.

[54]  Hyunjung Shin,et al.  Nonvolatile memory properties of Pt nanoparticle-embedded TiO2 nanocomposite multilayers via electrostatic layer-by-layer assembly , 2010, Nanotechnology.

[55]  B. Tieke,et al.  Selective Ion Transport across Self-Assembled Alternating Multilayers of Cationic and Anionic Polyelectrolytes , 2000 .

[56]  Chang Ming Li,et al.  Layered graphene/quantum dots for photovoltaic devices. , 2010, Angewandte Chemie.

[57]  San Ping Jiang,et al.  Self-Assembly of PDDA-Pt Nanoparticle∕Nafion Membranes for Direct Methanol Fuel Cells , 2005 .

[58]  Byung Hoon Kim,et al.  Ultrasound-assisted synthesis of Li-rich mesoporous LiMn2O4 nanospheres for enhancing the electrochemical performance in Li-ion secondary batteries. , 2012, Ultrasonics sonochemistry.

[59]  A. Durmuş,et al.  Self-assembly of highly charged polyelectrolyte complexes with superior proton conductivity and methanol barrier properties for fuel cells , 2010 .

[60]  P. T. Lillehei,et al.  Electrostatic Assembly of Polymer/Single Walled Carbon Nanotube Multilayer Films , 2003 .

[61]  F. Walsh,et al.  The Ionic Conductivity of a Nafion® 1100 Series of Proton‐exchange Membranes Re‐cast from Butan‐1‐ol and Propan‐2‐ol , 2010 .

[62]  S. Woo,et al.  Evaluation of a palladinized Nafion™ for direct methanol fuel cell application , 2004 .

[63]  Xiangwu Zhang Porous Organic-Inorganic Hybrid Electrolytes for High-Temperature Proton Exchange Membrane Fuel Cells , 2007 .

[64]  Hsing-lin Wang,et al.  Polyelectrolyte Trilayer Combinations Using Spin-Assembly and Ionic Self-Assembly , 2003 .

[65]  P. Hammond,et al.  Highly Conductive, Methanol Resistant Polyelectrolyte Multilayers , 2008 .

[66]  R. Advíncula,et al.  pH-sensitive bipolar ion-permselective ultrathin films. , 2004, Journal of the American Chemical Society.

[67]  C. M. Li,et al.  A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance , 2011 .

[68]  A. Matsuda,et al.  Deposition of Ultrathin Nafion Layers on Sol–Gel-Derived Phenylsilsesquioxane Particles via Layer-by-Layer Assembly , 2008 .

[69]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[70]  S. Jiang,et al.  Synthesis of PDDA–Pt nanoparticles for the self-assembly of electrode/Nafion membrane interface of polymer electrolyte fuel cells , 2006 .

[71]  A. Shukla,et al.  Modified-Pore-Filled-PVDF-Membrane Electrolytes for Direct Methanol Fuel Cells , 2011 .

[72]  Haoshen Zhou,et al.  A self-ordered, crystalline glass, mesoporous nanocomposite with high proton conductivity of 2 x 10(-2) S cm-1 at intermediate temperature. , 2005, Journal of the American Chemical Society.

[73]  Y. Shao-horn,et al.  Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. , 2010, ACS nano.

[74]  T. White,et al.  Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells , 2009 .

[75]  Prabhuram Joghee,et al.  Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells , 2004 .

[76]  Shichun Mu,et al.  Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers , 2005 .

[77]  F. Prinz,et al.  A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading , 2002 .

[78]  Minghui Yang,et al.  Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. , 2006, Biosensors & bioelectronics.

[79]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[80]  R. Gorte,et al.  Synthesis of dispersible Pd@CeO(2) core-shell nanostructures by self-assembly. , 2010, Journal of the American Chemical Society.

[81]  San Ping Jiang,et al.  Self-assembled membrane-electrode-assembly of polymer electrolyte fuel cells , 2005 .

[82]  Rong Chen,et al.  Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells , 2006 .

[83]  S. Jiang,et al.  Self-assembling multi-layer Pd nanoparticles onto Nafion membrane to reduce methanol crossover , 2005 .

[84]  D. Zhao,et al.  Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells , 2010 .

[85]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[86]  S. Sukhishvili,et al.  Multiresponsive clay-containing layer-by-layer films. , 2011, ACS nano.

[87]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[88]  H. Na,et al.  Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes , 2009 .

[89]  Vijay Ramani,et al.  Investigation of Nafion ® /HPA composite membranes for high temperature/low relative humidity PEMFC operation , 2004 .

[90]  Ali Durmus,et al.  Self-assembled polyelectrolyte multilayered films on Nafion with lowered methanol cross-over for DMFC applications , 2009 .

[91]  S. Jiang,et al.  Synthesis and characterization of Nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells , 2006 .

[92]  Jayant Kumar,et al.  Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly , 1998 .

[93]  E. Wang,et al.  Constructing Carbon Nanotube/Pt Nanoparticle Hybrids Using an Imidazolium‐Salt‐Based Ionic Liquid as a Linker , 2010, Advanced materials.

[94]  George M. Whitesides,et al.  Electrostatic self-assembly of macroscopic crystals using contact electrification , 2003, Nature materials.

[95]  Qin Zhou,et al.  Covalently linked DNA/protein multilayered film for controlled DNA release. , 2007, Journal of colloid and interface science.

[96]  M. Pan,et al.  Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process , 2010 .

[97]  Liang Wang,et al.  A general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[98]  Fenghua Li,et al.  Hollow flower-like AuPd alloy nanoparticles: One step synthesis, self-assembly on ionic liquid-functionalized graphene, and electrooxidation of formic acid , 2011 .

[99]  G. Lu,et al.  Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube , 2009 .

[100]  Shaojun Dong,et al.  Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. , 2010, ACS nano.

[101]  B. C. Kim,et al.  Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors , 2007 .

[102]  Wenhua Huang,et al.  A Methanol Impermeable Proton Conducting Composite Electrolyte System , 1995 .

[103]  S. Jiang,et al.  Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells , 2011 .

[104]  M. Misono Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten , 1987 .

[105]  D. Charraut,et al.  Surface morphology and thickness of a multilayer film composed of strong and weak polyelectrolytes: Effect of the number of adsorbed layers, concentration and type of salts , 2009 .

[106]  Y. Ein‐Eli,et al.  Acid‐Functionalized Mesostructured Aluminosilica for Hydrophilic Proton Conduction Membranes , 2007 .

[107]  S. Jiang,et al.  Methanol crossover reduction by Nafion modification via layer-by-layer self-assembly techniques , 2012 .

[108]  Yuyan Shao,et al.  Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. , 2011, ACS nano.

[109]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[110]  San Ping Jiang,et al.  Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells , 2007 .

[111]  Antonino S. Aricò,et al.  DMFCs: From Fundamental Aspects to Technology Development , 2001 .

[112]  P. Berg,et al.  Reaction Kinetics at the Triple-Phase Boundary in PEM Fuel Cells , 2008 .

[113]  T. R. Farhat,et al.  Self-assembly of Nafion®/poly(vinyl alcohol) at pH = 1.2 and Nafion®/poly(allyl amine) at pH = 11 , 2010 .

[114]  Catherine Picart,et al.  Buildup Mechanism for Poly(l-lysine)/Hyaluronic Acid Films onto a Solid Surface , 2001 .

[115]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[116]  Jingwei Hu,et al.  Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity , 2006 .

[117]  P. Pickup,et al.  Modification of Nafion Proton Exchange Membranes to Reduce Methanol Crossover in PEM Fuel Cells , 1999 .

[118]  S. Jiang,et al.  PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[119]  S. Narayanan,et al.  Performance of Direct Methanol Fuel Cells with Sputter‐Deposited Anode Catalyst Layers , 1999 .

[120]  Lifeng Chi,et al.  A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding , 1997 .

[121]  J. Rosenholm,et al.  Streaming Potential Studies on the Adsorption of Amphoteric Alkyldimethylamine and Alkyldimethylphosphine Oxides on Mesoporous Silica from Aqueous Solution , 2002 .

[122]  Chang Houn Rhee,et al.  Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells , 2005 .

[123]  P. Colomban,et al.  Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures , 1991 .

[124]  Jun Liu,et al.  Self-assembled materials for catalysis , 2009 .

[125]  Yuyan Shao,et al.  Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst , 2010 .

[126]  Shuo Chen,et al.  Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. , 2009, Journal of the American Chemical Society.

[127]  A. Matsuda,et al.  Percolated interface conductivity of sheet-like electrolyte prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid)-deposited core–shell particles and effect of core particle size , 2010 .

[128]  M. Kipper,et al.  Layer-by-layer assembly of polysaccharide-based polyelectrolyte multilayers: a spectroscopic study of hydrophilicity, composition, and ion pairing. , 2011, Biomacromolecules.

[129]  T. Fujigaya,et al.  Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. , 2009, Small.

[130]  M. Nogami,et al.  Ordered mesoporous phosphosilicate glass electrolyte film with low area specific resistivity. , 2003, Chemical communications.

[131]  Zhongyi Jiang,et al.  Appearance of poly(ethylene oxide) segments in the polyamide layer for antifouling nanofiltration me , 2011 .

[132]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[133]  J. Schlenoff,et al.  Ion Transport and Equilibria in Polyelectrolyte Multilayers , 2001 .

[134]  S. Jiang,et al.  Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. , 2010, Chemical communications.

[135]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[136]  A. Govindaraj,et al.  Graphene-based electrochemical supercapacitors , 2008 .

[137]  Jinhua Chen,et al.  PMo12-functionalized Graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation , 2010 .

[138]  C. Patrick Royall,et al.  Ionic colloidal crystals of oppositely charged particles , 2005, Nature.

[139]  T. Zhao,et al.  Pd and Pd-Cu Alloy Deposited Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells , 2005 .

[140]  Jeremy J. Harris,et al.  Synthesis of Passivating, Nylon-Like Coatings through Cross-Linking of Ultrathin Polyelectrolyte Films , 1999 .

[141]  M. Pan,et al.  Self-assembly of Nafion molecules onto silica nanoparticles formed in situ through sol-gel process. , 2008, Journal of colloid and interface science.

[142]  Sukyung Choi,et al.  Preparation of multilayered CdSe quantum dot sensitizers by electrostatic layer-by-layer assembly and a series of post-treatments toward efficient quantum dot-sensitized mesoporous TiO2 solar cells. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[143]  T. Okada,et al.  Ion and Water Transport Characteristics of Perfluorosulfonated Ionomer Membranes with H+ and Alkali Metal Cations , 2002 .

[144]  P. Hammond,et al.  Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. , 2007, Soft matter.

[145]  M. Rubner,et al.  Molecular-Level Processing of Conjugated Polymers. 4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions , 1997 .

[146]  Lin Li,et al.  Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells , 2007 .

[147]  S. Jiang,et al.  Fabrication and Performance of Polymer Electrolyte Fuel Cells by Self-Assembly of Pt Nanoparticles , 2005 .

[148]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[149]  J. Reibel,et al.  Highly‐ordered ultrathin lc multilayer films on solid substrates , 1991 .

[150]  A. Wagner,et al.  Photopolymerized lipids self-assembly for the solubilization of carbon nanotubes. , 2010, The journal of physical chemistry. B.

[151]  Johannes Schmitt,et al.  Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces , 1992 .

[152]  X. Zhao,et al.  Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets , 2011 .

[153]  Wei Xing,et al.  Highly conductive, methanol resistant fuel cell membranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid , 2009 .

[154]  Ih. Oh,et al.  Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering , 2002 .

[155]  S. Jiang,et al.  Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells. , 2010, Chemical communications.

[156]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[157]  E. Tsuchida,et al.  Protein nanotubes comprised of an alternate layer-by-layer assembly using a polycation as an electrostatic glue. , 2008, Chemistry.

[158]  B. Scrosati,et al.  Silica-Added, Composite Poly(vinyl alcohol) Membranes for Fuel Cell Application , 2005 .

[159]  Xiaogong Wang,et al.  Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[160]  Nam Hoon Kim,et al.  Polymer membranes for high temperature proton exchange membrane fuel cell : recent advances and challenges , 2011 .

[161]  A. Manthiram,et al.  Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells , 2004 .

[162]  H. Snaith,et al.  Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. , 2009, Nano letters.

[163]  E. Traversa,et al.  Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 °C with titania nanoparticles and nanotubes as fillers , 2011 .

[164]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[165]  I. Honma,et al.  Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes. , 2006, The journal of physical chemistry. B.

[166]  Catherine Picart,et al.  Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering. , 2012, Chemistry of materials : a publication of the American Chemical Society.

[167]  Won Choon Choi,et al.  Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell , 2001 .

[168]  Chang Ming Li,et al.  PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. , 2011, Physical chemistry chemical physics : PCCP.

[169]  H. Na,et al.  Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane with extremely low methanol crossover , 2009 .

[170]  S. Jiang,et al.  HPW/MCM‐41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Proton‐Exchange Membranes for Elevated‐Temperature Fuel Cells , 2010, Advanced materials.

[171]  Kikuko Hayamizu,et al.  Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells. , 2005, The journal of physical chemistry. B.

[172]  P. Schaaf,et al.  Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy. , 2006, The journal of physical chemistry. B.

[173]  Yuyan Shao,et al.  Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation , 2011 .

[174]  H. Na,et al.  Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover , 2010 .

[175]  T. Sasaki,et al.  Preparation and photocatalytic activity of Keggin-ion tungstate and TiO2 hybrid layer-by-layer film composites , 2009 .

[176]  A. O. Manturov,et al.  Effect of layer-by-layer electrostatic assemblies on the surface potential and current voltage characteristic of metal-insulator-semiconductor structures. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[177]  M. Nogami,et al.  Proton-conducting Ordered Mesostructured Silica Monoliths , 2006 .

[178]  Chang Ming Li,et al.  Exponentially growing layer-by-layer assembly to fabricate pH-responsive hierarchical nanoporous polymeric film and its superior controlled release performance. , 2010, Chemical communications.

[179]  Chang Ming Li,et al.  Direct modulation of localized surface plasmon coupling of Au nanoparticles on solid substrates via weak polyelectrolyte-mediated layer-by-layer self assembly. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[180]  Wei Gao,et al.  Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation , 2010 .

[181]  P. Hammond,et al.  Structure-property studies of highly conductive layer-by-layer assembled membranes for fuel cell PEM applications , 2010 .

[182]  R. Crooks,et al.  Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. , 2005, Journal of the American Chemical Society.

[183]  Xin-bo Zhang,et al.  Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage , 2012 .

[184]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[185]  A. Matsuda,et al.  Formation of a High Conductivity Fuel Cell Electrolyte by Pressing Diphenylsiloxane-Based Inorganic-Organic Hybrid Particles , 2009 .

[186]  T. Okada,et al.  Membrane transport characteristics of binary cation systems with Li+ and alkali metal cations in perfluorosulfonated ionomer , 2005 .

[187]  T. Okada,et al.  Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells. , 2006, The journal of physical chemistry. B.

[188]  Daniel K. Bonner,et al.  The synthetic tuning of clickable pH responsive cationic polypeptides and block copolypeptides , 2011 .

[189]  M. Eikerling,et al.  A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton‐Exchange Membranes Swollen in Water , 1998 .

[190]  Yifeng Wang,et al.  IMMOBILIZATION OF POLYSACCHARIDE DERIVATIVES ON POLYURETHANE SURFACE THROUGH LAYER-BY-LAYER SELF-ASSEMBLY AND PHOTOCHEMICAL MODIFICATION: IMMOBILIZATION OF POLYSACCHARIDE DERIVATIVES ON POLYURETHANE SURFACE THROUGH LAYER-BY-LAYER SELF-ASSEMBLY AND PHOTOCHEMICAL MODIFICATION , 2012 .

[191]  C. Yeh,et al.  Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. , 2007, Journal of the American Chemical Society.

[192]  Shaojun Dong,et al.  In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. , 2006, The journal of physical chemistry. B.

[193]  Tomoko Kasuga,et al.  Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties , 2006 .

[194]  Y. Lvov,et al.  Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles , 2007, Cell Biochemistry and Biophysics.

[195]  J. Engbersen,et al.  Responsive layer-by-layer materials for drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[196]  Bartosz A. Grzybowski,et al.  Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice , 2006, Science.

[197]  C. Bock,et al.  Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell. , 2005, The journal of physical chemistry. B.

[198]  Hongwei Wu,et al.  A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells , 2011 .

[199]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[200]  X. Le,et al.  Competitive protection of aptamer-functionalized gold nanoparticles by controlling the DNA assembly. , 2011, Analytical chemistry.

[201]  Zhongmin Ou,et al.  Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode. , 2012, Biosensors & bioelectronics.

[202]  Jianqiang Hu,et al.  EDTA-directed self-assembly and enhanced catalytic properties of sphere-constructed platinum nanochains , 2010 .

[203]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[204]  Irving Langmuir,et al.  Built-Up Films of Barium Stearate and Their Optical Properties , 1937 .

[205]  S. Jiang,et al.  Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. , 2011, Dalton transactions.

[206]  Mesut Yılmazoğlu,et al.  The effect of self-assembled multilayer formation via LbL technique on thermomechanical and transport properties of Nafion®112 based composite membranes for PEM fuel cells , 2010 .

[207]  T. Fujigaya,et al.  Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area , 2009 .

[208]  Yong-Qing Zhao,et al.  Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage , 2010 .

[209]  Wei Chen,et al.  Nafion®-titania nanocomposite proton exchange membranes , 2011 .

[210]  Paula T. Hammond,et al.  Fast Ion Conduction in Layer-By-Layer Polymer Films , 2003 .

[211]  David E. Williams,et al.  Meso‐SiO2–C12EO10OH–CF3SO3H—A Novel Proton‐Conducting Solid Electrolyte , 2003 .

[212]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[213]  Jinhua Chen,et al.  Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications , 2011 .

[214]  B. Keita,et al.  Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. , 2008, Journal of the American Chemical Society.

[215]  C. Barbero,et al.  Electrostatic self-assembly of hierarchical porous carbon microparticles , 2012 .

[216]  S. Jiang,et al.  Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications , 2011 .

[217]  Yanchun Zhao,et al.  Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium , 2011 .

[218]  S. Jiang,et al.  Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells , 2006 .

[219]  Zhi-You Zhou,et al.  Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles , 2008 .

[220]  Yueh-Heng Li,et al.  Concept and combustion characteristics of the high-luminescence flame for thermophotovoltaic systems , 2011 .

[221]  B. Tieke,et al.  Electrostatic layer-by-layer assembly of ultrathin films containing hexacyclen and p-sulfonatocalix[n]arene macrocycles. , 2006, Journal of nanoscience and nanotechnology.

[222]  R. Miranda,et al.  Molecular Self‐Assembly at Solid Surfaces , 2011, Advanced materials.

[223]  M. Zheng,et al.  Preparation of Mesoporous Co3O4 Nanoparticles via Solid−Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors , 2009 .

[224]  Sławomir Janusz Grabowski,et al.  What is the covalency of hydrogen bonding? , 2011, Chemical reviews.

[225]  T. Zhao,et al.  Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. , 2006, The journal of physical chemistry. B.

[226]  Edward Sacher,et al.  Spectroscopic evidence for π-π interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes , 2005 .

[227]  D. A. Brownson,et al.  Electrochemistry of graphene : not such a beneficial electrode material? , 2011 .

[228]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[229]  Paula T. Hammond,et al.  Designing a New Generation of Proton‐Exchange Membranes Using Layer‐by‐Layer Deposition of Polyelectrolytes , 2005 .

[230]  S. Jiang,et al.  Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization , 2010 .

[231]  M. F. Öksüzömer,et al.  Fabrication and performance of catalyst-coated membranes by layer-by-layer deposition of catalyst onto Nafion for polymer electrolyte membrane fuel cells , 2012 .

[232]  Haolin Tang,et al.  Synthesis and Characterization of a Self-Assembled Nafion/Silica Nanocomposite Membrane for Polymer Electrolyte Membrane Fuel Cells , 2008 .

[233]  R. Pei,et al.  Assembly of alternating polycation and DNA multilayer films by electrostatic layer-by-layer adsorption. , 2001, Biomacromolecules.

[234]  Fritz B. Prinz,et al.  The Triple Phase Boundary A Mathematical Model and Experimental Investigations for Fuel Cells , 2005 .

[235]  X. Yan,et al.  Design of an effective methanol-blocking membrane with purple membrane for direct methanol fuel cell , 2011 .

[236]  C. M. Li,et al.  Controllably layer-by-layer self-assembled polyelectrolytes/nanoparticle blend hollow capsules and their unique properties , 2011 .

[237]  Xinping Qiu,et al.  Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions , 2009 .

[238]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[239]  Ivan V. Kozhevnikov,et al.  Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. , 1998, Chemical reviews.

[240]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[241]  Dingshan Yu,et al.  Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors , 2010 .

[242]  Haoqing Hou,et al.  Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode. , 2012, Bioelectrochemistry.