Representing geometric structures ind dimensions: Topology and order

This work investigates data structures for representing and manipulatingd-dimensional geometric objects for arbitraryd ≥ 1. A class of geometric objects is defined, the “subdividedd-manifolds,” which is large enough to encompass many applications. A new representation is given for such objects, the “cell-tuple structure,” which provides direct access to topological structure, ordering information among cells, the topological dual, and boundaries.The cell-tuple structure gives a simple, uniform representation of subdivided manifolds which unifies the existing work in the field and provides intuitive clarity in all dimensions. The dual subdivision, and boundaries, are represented consistently.This work has direct applications in solid modeling, computer graphics, and computational geometry.

[1]  Kevin Weiler,et al.  Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments , 1985, IEEE Computer Graphics and Applications.

[2]  Charles M. Eastman,et al.  Geometric modelling: a survey , 1979 .

[3]  Paul Latiolais,et al.  Topology and Combinatorial Group Theory , 1990 .

[4]  Stephen Weingram,et al.  The Topology of CW Complexes , 1969 .

[5]  Victor Klee,et al.  A Representation of 2-dimensional Pseudomanifolds and its use in the Design of a Linear-Time Shelling Algorithm , 1978 .

[6]  Pascal Lienhardt,et al.  Topological models for boundary representation: a comparison with n-dimensional generalized maps , 1991, Comput. Aided Des..

[7]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[8]  E. Brisson,et al.  Representation ofd-dimensional geometric objects , 1990 .

[9]  Daniel H. Huson,et al.  On tilings of the plane , 1987 .

[10]  Daniel H. Huson,et al.  The classification of quasi-regular polyhedra of genus 2 , 1992, Discret. Comput. Geom..

[11]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  M. Poincaré Cinquième complément à l’Analysis situs , 1904 .

[13]  Douglas Stoker,et al.  A database for designing large physical systems , 1975, AFIPS '75.

[14]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[15]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[16]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[17]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[18]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[19]  G. T. Sallee Incidence graphs of convex polytopes , 1967 .

[20]  A. Fomenko,et al.  THE PROBLEM OF DISCRIMINATING ALGORITHMICALLY THE STANDARD THREE-DIMENSIONAL SPHERE , 1974 .

[21]  James R. Munkres,et al.  Topology; a first course , 1974 .

[22]  David E. Muller,et al.  Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..

[23]  Leonidas J. Guibas,et al.  The power of geometric duality , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[24]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[25]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[26]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[27]  Aristides A. G. Requicha,et al.  Constructive non-regularized geometry , 1991, Comput. Aided Des..

[28]  Charles E. Buckley A Divide-and-Conquer Algorithm for Computing 4-Dimensional Convex Hulls , 1988, Workshop on Computational Geometry.

[29]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[30]  Jacques Tits,et al.  A Local Approach to Buildings , 1981 .

[31]  Pascal Lienhardt Subdivisions of Surfaces and Generalized Maps , 1989, Eurographics.

[32]  Kevin Weiler Topological Structures for Geometric Modeling , 1986 .

[33]  R. J. Wilson Analysis situs , 1985 .