Organotropism of Breast Cancer Metastasis

[1]  G. Mundy The premetastatic niche , 2008 .

[2]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[3]  T. Giordano,et al.  NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF , 2007, Nature Medicine.

[4]  J. Massagué,et al.  Beyond tumorigenesis: cancer stem cells in metastasis , 2007, Cell Research.

[5]  J. Chirgwin,et al.  Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases , 2007, Cancer and Metastasis Reviews.

[6]  S. Rafii,et al.  Preparing the "soil": the premetastatic niche. , 2006, Cancer research.

[7]  J. Massagué,et al.  Cancer Metastasis: Building a Framework , 2006, Cell.

[8]  M. Noble,et al.  Cancer stem cells. , 2006, The New England journal of medicine.

[9]  Yibin Kang Pro‐metastasis function of TGFβ mediated by the smad pathway , 2006 .

[10]  P. Steeg Tumor metastasis: mechanistic insights and clinical challenges , 2006, Nature Medicine.

[11]  Wei Wei,et al.  Metastatic patterns in adenocarcinoma , 2006, Cancer.

[12]  S. M. Sims,et al.  Regulation of cancer cell migration and bone metastasis by RANKL , 2006, Nature.

[13]  W. Hahn,et al.  Roots and stems: stem cells in cancer , 2006, Nature Medicine.

[14]  François Vaillant,et al.  Generation of a functional mammary gland from a single stem cell , 2006, Nature.

[15]  V. Castronovo,et al.  Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells , 2006, Breast Cancer Research and Treatment.

[16]  S. Rafii,et al.  VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche , 2005, Nature.

[17]  P. Shore A role for Runx2 in normal mammary gland and breast cancer bone metastasis , 2005, Journal of cellular biochemistry.

[18]  R. Weil,et al.  Breast cancer metastasis to the central nervous system. , 2005, The American journal of pathology.

[19]  G. Stein,et al.  The Runx2 Osteogenic Transcription Factor Regulates Matrix Metalloproteinase 9 in Bone Metastatic Cancer Cells and Controls Cell Invasion , 2005, Molecular and Cellular Biology.

[20]  Wei He,et al.  Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Peterse,et al.  Breast cancer metastasis: markers and models , 2005, Nature Reviews Cancer.

[22]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[23]  Yibin Kang Functional genomic analysis of cancer metastasis: biologic insights and clinical implications , 2005, Expert review of molecular diagnostics.

[24]  W. Gerald,et al.  Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. , 2005, The Journal of clinical investigation.

[25]  A. Jemal,et al.  Cancer Statistics, 2005 , 2005, CA: a cancer journal for clinicians.

[26]  J. Price Metastasis from human breast cancer cell lines , 2005, Breast Cancer Research and Treatment.

[27]  Jonathan M. Yingling,et al.  Development of TGF-β signalling inhibitors for cancer therapy , 2004, Nature Reviews Drug Discovery.

[28]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[29]  G. Stein,et al.  Fidelity of Runx2 Activity in Breast Cancer Cells Is Required for the Generation of Metastases-Associated Osteolytic Disease , 2004, Cancer Research.

[30]  G. Roodman Mechanisms of bone metastasis. , 2004, Discovery medicine.

[31]  E. Ruoslahti,et al.  Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. , 2004, Cancer cell.

[32]  E. van Marck,et al.  Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia , 2004, British Journal of Cancer.

[33]  D. Welch Technical considerations for studying cancer metastasis in vivo , 1997, Clinical & Experimental Metastasis.

[34]  Suyun Huang,et al.  Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice , 2004, Clinical & Experimental Metastasis.

[35]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Haruna,et al.  [Calcium and bone metabolism during pregnancy and lactation]. , 2003, Clinical calcium.

[37]  C. Watson,et al.  Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. , 2003, The Journal of clinical investigation.

[38]  D. Scadden,et al.  Osteoblastic cells regulate the haematopoietic stem cell niche , 2003, Nature.

[39]  Haiyang Huang,et al.  Identification of the haematopoietic stem cell niche and control of the niche size , 2003, Nature.

[40]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[41]  S. Kurtzman,et al.  The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. , 2003, International journal of oncology.

[42]  R. Cardiff,et al.  Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[44]  I. Fidler,et al.  The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited , 2003, Nature Reviews Cancer.

[45]  G. Stein,et al.  Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. , 2003, Cancer research.

[46]  Gideon A. Rodan,et al.  Control of osteoblast function and regulation of bone mass , 2003, Nature.

[47]  David L. Lacey,et al.  Osteoclast differentiation and activation , 2003, Nature.

[48]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  C. Miyaura,et al.  Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. , 2003, Biochemical and biophysical research communications.

[50]  L. Suva,et al.  Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. , 2002, Cancer research.

[51]  G. Mundy Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities , 2002, Nature Reviews Cancer.

[52]  I. Macdonald,et al.  Metastasis: Dissemination and growth of cancer cells in metastatic sites , 2002, Nature Reviews Cancer.

[53]  C. Arteaga,et al.  Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases , 2002 .

[54]  C. Arteaga,et al.  Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. , 2002, The Journal of clinical investigation.

[55]  E. Schmidt,et al.  IKKα Provides an Essential Link between RANK Signaling and Cyclin D1 Expression during Mammary Gland Development , 2001, Cell.

[56]  Paul J. Williams,et al.  A Bone‐Seeking Clone Exhibits Different Biological Properties from the MDA‐MB‐231 Parental Human Breast Cancer Cells and a Brain‐Seeking Clone In Vivo and In Vitro , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[57]  R. Elble,et al.  The Breast Cancer β4 Integrin and Endothelial Human CLCA2 Mediate Lung Metastasis* , 2001, The Journal of Biological Chemistry.

[58]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[59]  E. Schmidt,et al.  IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. , 2001, Cell.

[60]  C. R. Snyder,et al.  Growth Factors and their Receptors in Cancer Metastasis , 2001, Cancer Metastasis - Biology and Treatment.

[61]  D. Lacey,et al.  The Osteoclast Differentiation Factor Osteoprotegerin-Ligand Is Essential for Mammary Gland Development , 2000, Cell.

[62]  R. Elble,et al.  Lung Endothelial Dipeptidyl Peptidase IV Promotes Adhesion and Metastasis of Rat Breast Cancer Cells via Tumor Cell Surface-associated Fibronectin* , 1998, The Journal of Biological Chemistry.

[63]  J. Price,et al.  Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. , 1997, Laboratory investigation; a journal of technical methods and pathology.

[64]  F. Miller,et al.  Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. , 1992, Cancer research.

[65]  R. Rubens,et al.  Liver metastases from breast cancer: the relationship between clinical, biochemical and pathological features and survival. , 1990, European journal of cancer.

[66]  S Paget,et al.  THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. , 1889 .

[67]  J E Talmadge,et al.  Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. , 1986, Cancer research.

[68]  Yeu‐Tsu N. Lee,et al.  Breast carcinoma: Pattern of metastasis at autopsy , 1983, Journal of surgical oncology.

[69]  J E Talmadge,et al.  Evidence for the clonal origin of spontaneous metastases. , 1982, Science.

[70]  J. Bingham Letter: Lower oesophageal sphincter. , 1974, Lancet.

[71]  I. Fidler,et al.  Selection of successive tumour lines for metastasis. , 1973, Nature: New biology.