Neural Mass Activity, Bifurcations, and Epilepsy

In this letter, we propose a general framework for studying neural mass models defined by ordinary differential equations. By studying the bifurcations of the solutions to these equations and their sensitivity to noise, we establish an important relation, similar to a dictionary, between their behaviors and normal and pathological, especially epileptic, cortical patterns of activity. We then apply this framework to the analysis of two models that feature most phenomena of interest, the Jansen and Rit model, and the slightly more complex model recently proposed by Wendling and Chauvel. This model-based approach allows us to test various neurophysiological hypotheses on the origin of pathological cortical behaviors and investigate the effect of medication. We also study the effects of the stochastic nature of the inputs, which gives us clues about the origins of such important phenomena as interictal spikes, interictal bursts, and fast onset activity that are of particular relevance in epilepsy.

[1]  Igor Timofeev,et al.  27 Pathophysiology of Neocortical Epileptic Seizures , 2010 .

[2]  R. Traub Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior , 1979, Brain Research.

[3]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[4]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[5]  Willy Govaerts,et al.  Numerical Continuation of Fold Bifurcations of Limit Cycles in MATCONT , 2003, International Conference on Computational Science.

[6]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[7]  J. DeFelipe,et al.  Cation‐Chloride Cotransporters and GABA‐ergic Innervation in the Human Epileptic Hippocampus , 2007, Epilepsia.

[8]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[9]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[10]  R. Porter Progress in Brain Research , 1965, Nature.

[11]  Ben H. Jansen,et al.  A neurophysiologically-based mathematical model of flash visual evoked potentials , 2004, Biological Cybernetics.

[12]  Peter Van Hese,et al.  Dynamics of epileptic phenomena determined from statistics of ictal transitions , 2006, IEEE Transactions on Biomedical Engineering.

[13]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[14]  Helmut Laufs,et al.  Functional imaging of seizures and epilepsy: evolution from zones to networks. , 2012, Current opinion in neurology.

[15]  M. Golubitsky,et al.  Singularities and Groups in Bifurcation Theory: Volume I , 1984 .

[16]  Jonathan Touboul,et al.  Bifurcation Analysis of a General Class of Nonlinear Integrate-and-Fire Neurons , 2008, SIAM J. Appl. Math..

[17]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[18]  P. Chauvel,et al.  Transition to Ictal Activity in Temporal Lobe Epilepsy: Insights From Macroscopic Models , 2008 .

[19]  Sadri Hassani,et al.  Nonlinear Dynamics and Chaos , 2000 .

[20]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[21]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[22]  Jonathan Touboul,et al.  Dynamics and bifurcations of the adaptive exponential integrate-and-fire model , 2008, Biological Cybernetics.

[23]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[24]  Fabrice Bartolomei,et al.  MRI-negative prefrontal epilepsy due to cortical dysplasia explored by stereoelectroencephalography (SEEG). , 2008, Epileptic disorders : international epilepsy journal with videotape.

[25]  J. Guckenheimer,et al.  Computing Hopf Bifurcations I , 1997 .

[26]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[27]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[28]  Kenneth R. Meyer,et al.  Singularities and Groups in Bifurcation Theory. Volume II (Martin Golubitsky, Ian Stewart, and David G. Schaeffer) , 1989, SIAM Rev..

[29]  R. Llinás,et al.  Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. , 1979, Journal of neurophysiology.

[30]  D. Hansel,et al.  Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. , 2005, Physical review letters.

[31]  J. Pretorius,et al.  Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[33]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[34]  P. Taylor,et al.  Phase space approach for modeling of epileptic dynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[36]  Olivier D. Faugeras,et al.  A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs , 2008, Front. Comput. Neurosci..

[37]  N. Berglund,et al.  Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach , 2005 .

[38]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[39]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[40]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[41]  S. Moshé,et al.  How do seizures stop? , 2008, Epilepsia.

[42]  M. Steriade,et al.  Neocortical seizures: initiation, development and cessation , 2004, Neuroscience.

[43]  J. White,et al.  Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Ermentrout,et al.  Parabolic bursting in an excitable system coupled with a slow oscillation , 1986 .

[45]  F Edward Dudek,et al.  Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. , 2007, Progress in brain research.

[46]  Wulfram Gerstner,et al.  Mathematical formulations of Hebbian learning , 2002, Biological Cybernetics.

[47]  L. Garey Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. By V. BRAITENBERG and A. SCHÜZ. (Pp. xiii+249; 90 figures; ISBN 3 540 63816 4). Berlin: Springer. 1998. , 1999 .

[48]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[49]  G Pfurtscheller,et al.  Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[50]  M. Gutnick,et al.  Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat , 1977, Experimental Brain Research.

[51]  L. Arnold Random Dynamical Systems , 2003 .

[52]  R. Traub Simulation of intrinsic bursting in CA3 hippocampal neurons , 1982, Neuroscience.

[53]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[54]  Olivier D. Faugeras,et al.  Bifurcation Analysis of Jansen's Neural Mass Model , 2006, Neural Computation.

[55]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[56]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[57]  J. Régis,et al.  Enhanced EEG functional connectivity in mesial temporal lobe epilepsy , 2008, Epilepsy Research.

[58]  J Bancaud,et al.  [Methodology of stereo EEG exploration and surgical intervention in epilepsy]. , 1973, Revue d'oto-neuro-ophtalmologie.

[59]  Freddy Dumortier,et al.  Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3 , 1987, Ergodic Theory and Dynamical Systems.

[60]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[61]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[62]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[63]  John Guckenheimer,et al.  Computing Hopf Bifurcations. II: Three Examples From Neurophysiology , 1996, SIAM J. Sci. Comput..

[64]  Olivier D. Faugeras,et al.  Noise-Induced Behaviors in Neural Mean Field Dynamics , 2011, SIAM J. Appl. Dyn. Syst..

[65]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[66]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[67]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[68]  Freddy Dumortier,et al.  Bifurcations of Planar Vector Fields: Nilpotent Singularities and Abelian Integrals , 1991 .

[69]  John G. R. Jefferys,et al.  Review of the role of inhibitory neurons in chronic epileptic foci induced by intracerebral tetanus toxin , 1996, Epilepsy Research.

[70]  C. Houser,et al.  Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures , 1996, Epilepsy Research.

[71]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[72]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[73]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[74]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[75]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[76]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[77]  Jonathan Touboul,et al.  Spiking Dynamics of Bidimensional Integrate-and-Fire Neurons , 2009, SIAM J. Appl. Dyn. Syst..

[78]  Michael E. Hasselmo,et al.  Short term memory function in a model of the olfactory system , 1997 .

[79]  Milan Kubíček,et al.  Algorithm for Evaluation of Complex Bifurcation Points in Ordinary Differential Equations , 1980 .

[80]  J. Noebels,et al.  Targeting Epilepsy Genes , 1996, Neuron.

[81]  T. Sejnowski,et al.  Cellular and network mechanisms of electrographic seizures. , 2008, Drug discovery today. Disease models.