Miniature fuel cells for portable power: Design considerations and challenges

We discuss key integration issues and engineering trade offs germane to all miniaturized fuel cell systems: thermal management, humidification control, water recirculation, air movement, fuel delivery, and power conditioning. We propose a design for a miniaturized protonexchange-membrane methanol-based fuel cell for powering 0.5–20 W portable telecommunication and computing devices. Our system is implemented on a silicon substrate to leverage advanced silicon processing and microelectromechanical systems technology enabling optimal fuel cell performance and minimizing production costs. We propose two alternative designs: a bipolar design using separate Si wafers for the anode and cathode and a monolithic design incorporating anode and cathode onto a single Si wafer.

[1]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[2]  S. D. Collins,et al.  Porous Silicon Formation and Electropolishing of Silicon by Anodic Polarization in HF Solution , 1989 .

[3]  H. Föll,et al.  Formation Mechanism and Properties of Electrochemically Etched Trenches in n‐Type Silicon , 1990 .

[4]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .

[5]  T. Fuller,et al.  Water and Thermal Management in Solid‐Polymer‐Electrolyte Fuel Cells , 1993 .

[6]  T. Springer,et al.  Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells , 1993 .

[7]  Wenhua Huang,et al.  A Methanol Impermeable Proton Conducting Composite Electrolyte System , 1995 .

[8]  Shimshon Gottesfeld,et al.  Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers , 1995 .

[9]  Robert F. Savinell,et al.  Formic Acid Oxidation in a Polymer Electrolyte Fuel Cell A Real‐Time Mass‐Spectrometry Study , 1996 .

[10]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[11]  Shimshon Gottesfeld,et al.  Electro‐osmotic Drag of Water in Ionomeric Membranes New Measurements Employing a Direct Methanol Fuel Cell , 1997 .

[12]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[13]  B. Höhlein,et al.  Compact methanol reformer test for fuel-cell powered light-duty vehicles , 1998 .

[14]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[15]  William H. Smyrl,et al.  A Miniature Methanol/Air Polymer Electrolyte Fuel Cell , 1999 .

[16]  Klavs F. Jensen,et al.  Microchemical systems: Status, challenges, and opportunities , 1999 .

[17]  Shimshon Gottesfeld,et al.  Influence of Ionomer Content in Catalyst Layers on Direct Methanol Fuel Cell Performance , 1999 .

[18]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[19]  P. Gifford,et al.  Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles , 1999 .

[20]  J. Morse,et al.  Porous Thin-Film Anode Materials for Solid-Oxide fuel Cells , 1999 .

[21]  Microreaction technology : industrial prospects : IMRET 3:proceedings of the Third International Conference on Microreaction Technology , 2000 .

[22]  A. van den Berg,et al.  Multi-walled microchannels: free-standing porous silicon membranes for use in /spl mu/TAS , 2000, Journal of Microelectromechanical Systems.

[23]  Room-Temperature Hydrogen Storage in Nanotubes , 2000, Science.

[24]  Klavs F. Jensen,et al.  Microfabricated multiphase packed-bed reactors : Characterization of mass transfer and reactions , 2001 .