Particle Ecient Importance Sampling
暂无分享,去创建一个
[1] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[2] N. Shephard,et al. Multivariate stochastic variance models , 1994 .
[3] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .
[4] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[5] J. Durbin,et al. Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .
[6] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[7] M. Pitt,et al. Likelihood analysis of non-Gaussian measurement time series , 1997 .
[8] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[9] M. Pitt. Smooth Particle Filters for Likelihood Evaluation and Maximisation , 2002 .
[10] J. Richard,et al. Univariate and Multivariate Stochastic Volatility Models: Estimation and Diagnostics , 2003 .
[11] N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.
[12] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[13] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[14] A. Doucet,et al. Efficient Block Sampling Strategies for Sequential Monte Carlo Methods , 2006 .
[15] David N. DeJong,et al. Effi cient Likelihood Evaluation of State-Space Representations , 2011 .
[16] J. Richard,et al. Efficient high-dimensional importance sampling , 2007 .
[17] H. Manner,et al. Dynamic stochastic copula models: Estimation, inference and applications , 2012 .
[18] L. Bauwens,et al. Efficient importance sampling for ML estimation of SCD models , 2009, Comput. Stat. Data Anal..
[19] Drew D. Creal,et al. Testing the assumptions behind importance sampling , 2009 .
[20] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[21] P. Fearnhead,et al. A sequential smoothing algorithm with linear computational cost. , 2010 .
[22] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[23] N. Shephard,et al. BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.
[24] Lennart F. Hoogerheide,et al. Joint Independent Metropolis-Hastings Methods for Nonlinear Non-Gaussian State Space Models , 2012 .
[25] Lennart F. Hoogerheide,et al. A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation , 2012 .
[26] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[27] Jean-Francois Richard,et al. Analysis of discrete dependent variable models with spatial correlation , 2013 .
[28] Rong Chen,et al. Lookahead Strategies for Sequential Monte Carlo , 2013, 1302.5206.
[29] M. Pitt,et al. Importance Sampling Squared for Bayesian Inference in Latent Variable Models , 2013, 1309.3339.
[30] S. Koopman,et al. Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models , 2012 .