CHEMODYNAMICAL SIMULATIONS OF THE MILKY WAY GALAXY

We present chemodynamical simulations of a Milky-Way-type galaxy using a self-consistent hydrodynamical code that includes supernova feedback and chemical enrichment, and predict the spatial distribution of elements from oxygen to zinc. In the simulated galaxy, the kinematical and chemical properties of the bulge, disk, and halo are consistent with the observations. The bulge formed from the assembly of subgalaxies at z 3, and has higher [α/Fe] ratios because of the small contribution from Type Ia supernovae. The disk formed with a constant star formation over 13 Gyr, and shows a decreasing trend of [α/Fe] and increasing trends of [(Na,Al,Cu,Mn)/Fe] against [Fe/H]. However, the thick disk stars tend to have higher [α/Fe] and lower [Mn/Fe] than thin disk stars. We also predict the frequency distribution of elemental abundance ratios as functions of time and location, which can be directly compared with galactic archeology projects such as HERMES.

[1]  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[2]  Naohito Nakasato,et al.  Three-dimensional Simulations of the Chemical and Dynamical Evolution of the Galactic Bulge , 2003 .

[3]  Luca Ciotti,et al.  Production and circulation of iron in elliptical galaxies and clusters of galaxies , 1993 .

[4]  K. Nomoto,et al.  To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .

[5]  Chemical enrichment in the carbon-enhanced damped Lyα system by population III supernovae , 2011 .

[6]  K. Cunha,et al.  Chemical abundances in the universe : connecting first stars to planets : proceedings of the 265th symposium of the International Astronomical Union held in Rio de Janeiro, Brazil, August 10-14, 2009 , 2010 .

[7]  Elaine M. Sadler,et al.  K Giants in Baade's Window. II. The Abundance Distribution , 1996 .

[8]  P. François,et al.  NLTE determination of the aluminium abundance in a homogeneous sample of extremely metal-poor stars , 2007, 0802.1519.

[9]  M. Rees,et al.  Core-Collapse Very Massive Stars: Evolution, Explosion, and Nucleosynthesis of Population III 500-1000 M☉ Stars , 2005, astro-ph/0507593.

[10]  W. J. Maciel,et al.  An estimate of the time variation of the abundance gradient from planetary nebulae ⋆ III. O, S, Ar, and Ne: A comparison of PN samples , 2006, astro-ph/0603419.

[11]  The Geneva-Copenhagen survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk , 2007, 0707.1891.

[12]  Sulphur and zinc abundances in Galactic halo stars revisited , 2007, astro-ph/0702689.

[13]  Jeremiah P. Ostriker,et al.  Galactic disks, infall, and the global value of Omega , 1992 .

[14]  Department of Physics,et al.  Nucleosynthesis in type Ia supernovae , 1997 .

[15]  M. Merrifield The Rotation curve of the milky way to 2.5-R(0) from the thickness of the HI layer , 1992 .

[16]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[17]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[18]  L. Blitz,et al.  The Milky Way Rotation Curve and Its Vertical Derivatives: Inside the Solar Circle , 2008, 0802.2714.

[19]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[20]  Neal Katz,et al.  Dissipational galaxy formation. II - Effects of star formation , 1992 .

[21]  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[22]  Manganese trends in a sample of thin and thick disk stars - The origin of Mn , 2007, astro-ph/0703488.

[23]  Sulphur abundances in disk stars: A correlation with silicon , 2002, astro-ph/0206075.

[24]  K. Nomoto,et al.  THE ROLE OF TYPE Ia SUPERNOVAE IN CHEMICAL EVOLUTION. I. LIFETIME OF TYPE Ia SUPERNOVAE AND METALLICITY EFFECT , 2007, 0801.0215.

[25]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[26]  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[27]  E. Cappellaro,et al.  The Rates of hypernovae and gamma-ray bursts: Implications for their progenitors , 2004 .

[28]  Abundances for metal-poor stars with accurate parallaxes , I. Basic data , 2003, astro-ph/0303653.

[29]  S. D. M. White,et al.  The merging history of dark matter haloes in a hierarchical universe , 1993 .

[30]  S. Feltzing,et al.  Oxygen trends in the Galactic thin and thick disks , 2003, astro-ph/0310741.

[31]  A. Marek,et al.  DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY , 2007, 0708.3372.

[32]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .

[33]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[34]  K. Nomoto,et al.  Bipolar Supernova Explosions: Nucleosynthesis and Implications for Abundances in Extremely Metal-Poor Stars , 2003, astro-ph/0304172.

[35]  Michael S. Warren,et al.  Dark halos formed via dissipationless collapse. I: Shapes and alignment of angular momentum , 1992 .

[36]  Implications of O and Mg abundances in metal-poor halo stars for stellar iron yields , 2001, astro-ph/0107153.

[37]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – I: Tests of the code , 1993 .

[38]  Astrophysics,et al.  NLTE abundances of Mn in a sample of metal-poor stars ⋆ , 2008, 0811.0681.

[39]  T. Abel,et al.  The first stars : proceedings of the MPA/ESO Workshop, held at Garching, Germany, 4-6 August 1999 , 2000 .

[40]  NLTE determination of the sodium abundance in a homogeneous sample of extremely metal-poor stars , 2007, astro-ph/0701199.

[41]  Matthias Steinmetz,et al.  The Cosmological Origin of the Tully-Fisher Relation , 1998, astro-ph/9808076.

[42]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[43]  Gerard Gilmore,et al.  Chemistry and Kinematics in the Solar Neighborhood: Implications for Stellar Populations and for Galaxy Evolution , 1995 .

[44]  K. Cunha,et al.  Chemical Abundances of Luminous Cool Stars in the Galactic Center from High-Resolution Infrared Spectroscopy , 2007, 0707.2610.

[45]  R. Rebolo,et al.  Sulphur Abundance in Very Metal-poor Stars , 2001, astro-ph/0107072.

[46]  A New Evolutionary Path to Type Ia Supernovae: A Helium-rich Supersoft X-Ray Source Channel , 1999, astro-ph/9902303.

[47]  Oxygen, Sodium, Magnesium and Aluminium as tracers of the Galactic Bulge Formation , 2006, astro-ph/0610346.

[48]  S. Ortolani,et al.  The metal content of bulge field stars from FLAMES-GIRAFFE spectra - I. Stellar parameters and iron abundances , 2008, 0805.1218.

[49]  S. Masuda,et al.  Errata: Sulfur Abundances in Metal-Poor Stars Based on OAO-1.88m/HIDES Spectra , 2005 .

[50]  M. Spaans,et al.  Chemical Abundances in the Universe , 2010 .

[51]  R. Rich,et al.  The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .

[52]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[53]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[54]  A. Cabrera-Lavers,et al.  Old stellar Galactic disc in near-plane regions according to 2MASS: Scales, cut-off, flare and warp , 2002, astro-ph/0208236.

[55]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[56]  P. Bonifacio,et al.  Non-LTE abundances of Mg and K in extremely metal-poor stars and the evolution of [O/Mg], [Na/Mg], [Al/Mg] and [K/Mg] in the Milky Way , 2010, 1001.1207.

[57]  Yuzuru Yoshii,et al.  Relative frequencies of Type Ia and Type II supernovae in the chemical evolution of the Galaxy, LMC and SMC , 1995 .

[58]  S. Sakai,et al.  Astrometry of Galactic Star-Forming Region Sharpless 269 with VERA : Parallax Measurements and Constraint on Outer Rotation Curve , 2007, 0709.0820.

[59]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[60]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[61]  SPECTROSCOPIC STUDIES OF EXTREMELY METAL-POOR STARS WITH THE SUBARU HIGH DISPERSION SPECTROGRAPH. II. THE r-PROCESS ELEMENTS, INCLUDING THORIUM , 2004, astro-ph/0402298.

[62]  Yoji Kondo,et al.  Conditions for accretion-induced collapse of white dwarfs , 1991 .

[63]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[64]  O. E. Bronson Messer,et al.  Mechanisms of Core‐Collapse Supernovae & Simulation Results from the CHIMERA Code , 2009, 1002.4909.

[65]  P. Shapiro,et al.  ON THE SURVIVAL AND ABUNDANCE OF DISK-DOMINATED GALAXIES , 2007, 0711.3014.

[66]  B. Gibson,et al.  ORIGINS OF THE THICK DISK AS TRACED BY THE ALPHA ELEMENTS OF METAL-POOR GIANT STARS SELECTED FROM RAVE , 2010, 1008.3828.

[67]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[68]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[69]  S. Honda,et al.  Chemical Evolution of Zinc in the Galaxy , 2009 .

[70]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[71]  J. Sommer-Larsen,et al.  GALAXY FORMATION : CDM , FEEDBACK AND THE HUBBLE SEQUENCE , 2008 .

[72]  R. Michael Rich,et al.  Abundances of Baade’s Window Giants from Keck HIRES Spectra. II. The Alpha and Light Odd Elements , 2006, astro-ph/0609087.

[73]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .