Spin-Peierls distortions in TiPO 4

On the basis of single-crystal x-ray diffraction we show that TiPO${}_{4}$ undergoes a spin-Peierls distortion below 74.5(5) K, with a dimerization of the Ti chains along the $\mathbf{c}$ axis. Between 74.5(5) and 111.6(3) K, TiPO${}_{4}$ develops an incommensurate (IC) phase with temperature-dependent $\mathbf{q}$ vector (${\ensuremath{\sigma}}_{1}$,0,0). Density functional calculations strongly suggest that the IC phase results from a frustration of the lock-in spin-Peierls transition due to the competition of three energetically almost degenerate crystal structures and elastic coupling of the Ti chains via the bridging PO${}_{4}$ units. The phase transition into the IC phase is of second order, but the lock-in transition into the spin-Peierls distortion below 74.5 K is of weak first order in nature.

[1]  H. Stokes,et al.  Equivalence of superspace groups , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[2]  M. Whangbo,et al.  Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4 , 2011, 1106.0662.

[3]  I. Heinmaa,et al.  Spin-Peierls transition in the S=1/2 compound TiPO4 featuring large intrachain coupling , 2011 .

[4]  S. Smaalen,et al.  Normal-to-incommensurate phase transition in the spin-Peierls compound TiOCl: An x-ray diffraction study , 2008 .

[5]  R. Valentí,et al.  Density functional study of the electronic and vibrational properties of TiOCl , 2007, 0710.1230.

[6]  P. Lee From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics , 2007, 0708.2115.

[7]  L. Palatinus,et al.  Structure of the incommensurate phase of the quantum magnet TiOCl , 2006 .

[8]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[9]  L. Palatinus,et al.  Incommensurate interactions and nonconventional spin-Peierls transition in TiOBr , 2005, cond-mat/0504445.

[10]  M. Kriener,et al.  Zero-field incommensurate spin-Peierls phase with interchain frustration in TiOCl. , 2005, Physical review letters.

[11]  L. Palatinus,et al.  The twofold superstructure of titanium(III) oxybromide at T = 17.5 K. , 2005, Acta crystallographica. Section C, Crystal structure communications.

[12]  S. van Smaalen,et al.  Spin-Peierls transition in TiOCl , 2005, cond-mat/0503203.

[13]  C. Gros,et al.  TiOCl, an orbital-ordered system? , 2003, cond-mat/0312156.

[14]  M. whangbo,et al.  Investigation of the spin exchange interactions and magnetic Structures of the CrVO4-type transition metal phosphates, sulfates, and vanadates by spin dimer analysis. , 2003, Inorganic chemistry.

[15]  Gerbrand Ceder,et al.  S = 1 2 chains and spin-Peierls transition in TiOCl , 2002, cond-mat/0206374.

[16]  Jonathan P. Wright,et al.  High-resolution powder neutron diffraction study of helimagnetic order in CrP 1-x V x O 4 solid solutions , 2000 .

[17]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[18]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[19]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[20]  M. Reehuis,et al.  Neutron Diffraction Study of the Nuclear and Magnetic Structure of the CrVO4Type Phosphates TiPO4and VPO4 , 1996 .

[21]  Braden,et al.  Structural analysis of CuGeO3: Relation between nuclear structure and magnetic interaction. , 1996, Physical review. B, Condensed matter.

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[24]  Hase,et al.  Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. , 1993, Physical review letters.

[25]  R. Sáez-Puche,et al.  Synthesis and magnetic properties of crystalline CrVO4 , 1988 .

[26]  J. Attfield,et al.  The magnetic properties of the high pressure phase of ferric phosphate, FePO4-II , 1986 .

[27]  J. Attfield,et al.  The spiral magnetic structure of β-chromium(III) orthophosphate (β-CrPO4) , 1985 .

[28]  N. Kinomura,et al.  Preparation of transition metal orthophosphates, MPO4, and their magnetic properties , 1982 .

[29]  H. Mook,et al.  Diffuse x-ray and inelastic neutron scattering study of the spin Peierl's transition in N-methyl-N-ethyl-morpholinium bistetracyanoquinodimethane [MEM (TCNQ) 2 ] , 1981 .

[30]  G. D. Watkins,et al.  Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF ) with bisdithiolene metal complexes , 1976 .

[31]  A. Buzdin,et al.  SPIN-PEIERLS TRANSITION IN THE QUASI ONE-DIMENSIONAL CRYSTALS , 1976 .

[32]  G. D. Watkins,et al.  Observation of a Spin-Peierls Transition in a Heisenberg Antiferromagnetic Linear-Chain System , 1975 .

[33]  P. M. Richards Critical temperatures of Heisenberg magnets by second-order Green's-function theory: Application toS=∞cubic lattices and quasi-one-dimensional systems , 1974 .

[34]  Sander van Smaalen,et al.  Generation of (3 + d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures. , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[35]  R. Glaum,et al.  On the Bonding Behaviour of Transition Metal Ions in Inorganic Solids—Optical and Epr Spectroscopic Studies on Anhydrous Phosphates and Phosphate-Silicates of Ti3+ , 1996 .

[36]  R. Gruehn,et al.  Beiträge zum thermischen Verhalten wasserfreier Phosphate. VI : Einkristallstrukturverfeinerung der Metall(III)-orthophosphate TiPO4 and VPO4 , 1992 .