Discrete gradient structure of a second-order variable-step method for nonlinear integro-differential models

,

[1]  T. Tang,et al.  A decreasing upper bound of energy for time-fractional phase-field equations , 2022, Communications in Computational Physics.

[2]  Hong-lin Liao,et al.  Energy stability of variable-step L1-type schemes for time-fractional Cahn-Hilliard model , 2022, ArXiv.

[3]  Seakweng Vong,et al.  A Symmetric Fractional-order Reduction Method for Direct Nonuniform Approximations of Semilinear Diffusion-wave Equations , 2021, Journal of Scientific Computing.

[4]  Tao Zhou,et al.  An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen-Cahn equation , 2020, SIAM J. Sci. Comput..

[5]  Tao Zhou,et al.  Positive definiteness of real quadratic forms resulting from the variable-step approximation of convolution operators , 2020, Science China Mathematics.

[6]  T. Tang,et al.  Numerical Energy Dissipation for Time-Fractional Phase-Field Equations , 2020, Communications on Pure and Applied Analysis.

[7]  T. Tang,et al.  How to Define Dissipation-Preserving Energy for Time-Fractional Phase-Field Equations , 2020, CSIAM Transactions on Applied Mathematics.

[8]  Zhimin Zhang,et al.  Analysis of adaptive BDF2 scheme for diffusion equations , 2019, Math. Comput..

[9]  Tao Zhou,et al.  A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations , 2019, J. Comput. Phys..

[10]  Kassem Mustapha,et al.  An L1 approximation for a fractional reaction-diffusion equation, a second-order error analysis over time-graded meshes , 2019, SIAM J. Numer. Anal..

[11]  Hong-lin Liao,et al.  Adaptive second-order Crank-Nicolson time-stepping schemes for time fractional molecular beam epitaxial growth models , 2019, SIAM J. Sci. Comput..

[12]  Tao Zhou,et al.  On Energy Dissipation Theory and Numerical Stability for Time-Fractional Phase-Field Equations , 2018, SIAM J. Sci. Comput..

[13]  Jiwei Zhang,et al.  A Discrete Grönwall Inequality with Applications to Numerical Schemes for Subdiffusion Problems , 2018, SIAM J. Numer. Anal..

[14]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[15]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[16]  Ahmed Alsaedi,et al.  Maximum principle for certain generalized time and space fractional diffusion equations , 2015 .

[17]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[18]  Dumitru Baleanu,et al.  On nonlinear fractional Klein-Gordon equation , 2011, Signal Process..

[19]  Kassem Mustapha,et al.  A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel , 2010 .

[20]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[21]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[22]  Stig Larsson,et al.  Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel , 2003 .

[23]  Eduardo Cuesta,et al.  A Numerical Method for an Integro-Differential Equation with Memory in Banach Spaces: Qualitative Properties , 2003, SIAM J. Numer. Anal..

[24]  Ralf Metzler,et al.  Accelerating Brownian motion: A fractional dynamics approach to fast diffusion , 2000 .

[25]  Vidar Thomée,et al.  Discretization with variable time steps of an evolution equation with a positive-type memory term , 1996 .

[26]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[27]  Vidar Thomée,et al.  Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[28]  R. Nigmatullin To the Theoretical Explanation of the “Universal Response” , 1984 .

[29]  K ASSEM,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[30]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[31]  I. Gavrilyuk Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..

[32]  Vidar Thomée,et al.  Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..