ON THE ORIENTATION AND MAGNITUDE OF THE BLACK HOLE SPIN IN GALACTIC NUCLEI

Massive black holes (BHs) in galactic nuclei vary their mass MBH and spin vector JBH due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e., when the accretion episodes are randomly and isotropically oriented, or coherent, i.e., when they occur all in a preferred plane. Instead, we consider different degrees of anisotropy in the fueling, never confining to accretion events on a fixed direction. We follow the BH growth evolving contemporarily with mass, spin modulus a, and spin direction. We discover the occurrence of two regimes. An early phase (MBH ≲ 107 M☉) in which rapid alignment of the BH spin direction to the disk angular momentum in each single episode leads to erratic changes in the BH spin orientation and at the same time to large spins (a ∼ 0.8). A second phase starts when the BH mass increases above ≳ 107 M☉ and the accretion disks carry less mass and angular momentum relative to the hole. In the absence of a preferential direction, the BHs tend to spin-down in this phase. However, when a modest degree of anisotropy in the fueling process (still far from being coherent) is present, the BH spin can increase up to a ∼ 1 for very massive black holes (MBH ≳ 108 M☉), and its direction is stable over the many accretion cycles. We discuss the implications of our results in the realm of the observations of BH spin and jet orientations.

[1]  Emilio Molina,et al.  Summary and Discussion , 2014 .

[2]  Institut de Ciencies del Cosmos,et al.  Accretion-driven evolution of black holes: Eddington ratios, duty cycles and active galaxy fractions , 2011, 1111.3574.

[3]  D. Merritt,et al.  Spin evolution of supermassive black holes and galactic nuclei , 2012, 1208.6274.

[4]  S. Nayakshin,et al.  THE OBSERVED M–σ RELATIONS IMPLY THAT SUPER-MASSIVE BLACK HOLES GROW BY COLD CHAOTIC ACCRETION , 2012, 1203.3450.

[5]  E. Berti,et al.  Effects of post-Newtonian spin alignment on the distribution of black-hole recoils , 2012, 1203.2920.

[6]  L. Ho,et al.  COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. II. EVIDENCE FOR DOWNSIZING OF SPIN EVOLUTION , 2012, 1202.3516.

[7]  E. Barausse The evolution of massive black holes and their spins in their galactic hosts , 2012, 1201.5888.

[8]  Y. Zlochower,et al.  Gravitational recoil from accretion-aligned black-hole binaries , 2012, 1201.1923.

[9]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[10]  Cambridge,et al.  Can we measure the accretion efficiency of active galactic nuclei , 2011, 1109.6225.

[11]  Y. Zlochower,et al.  Hangup kicks: still larger recoils by partial spin-orbit alignment of black-hole binaries. , 2011, Physical review letters.

[12]  A. Markowitz,et al.  Assessing black hole spin in deep Suzaku observations of Seyfert 1 AGN , 2011, 1106.2135.

[13]  A. C. Fabian,et al.  THE SPIN OF THE SUPERMASSIVE BLACK HOLE IN NGC 3783 , 2011, 1104.1172.

[14]  A. Laor,et al.  THE RADIATIVE EFFICIENCY OF ACCRETION FLOWS IN INDIVIDUAL ACTIVE GALACTIC NUCLEI , 2010, 1012.3213.

[15]  A. Markowitz,et al.  Iron line profiles in Suzaku spectra of bare Seyfert galaxies , 2010, 1010.2080.

[16]  U. Michigan,et al.  Multi-epoch X-ray observations of the Seyfert 1.2 galaxy Mrk 79: bulk motion of the illuminating X-ray source , 2010, 1009.2987.

[17]  E. Phinney,et al.  Maximum black-hole spin from quasicircular binary mergers , 2010, 1005.0627.

[18]  E. Berti,et al.  RELATIVISTIC SUPPRESSION OF BLACK HOLE RECOILS , 2010, 1003.4993.

[19]  M. Volonteri,et al.  Gravitational recoil: effects on massive black hole occupation fraction over cosmic time , 2010, 1001.1743.

[20]  R. Battye,et al.  A dichotomy in radio jet orientations in elliptical galaxies , 2010, 1001.1409.

[21]  G. Pareschi,et al.  Chasing the heaviest black holes of jetted active galactic nuclei , 2009, 0912.0001.

[22]  U. Virginia,et al.  The relative growth of optical and radio quasars in SDSS , 2009, 0909.4092.

[23]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[24]  C. Baugh,et al.  Grand unification of AGN activity in the ΛCDM cosmology , 2009, 0911.1128.

[25]  A. Perego,et al.  Dual black holes in merger remnants – II. Spin evolution and gravitational recoil , 2009, 0910.5729.

[26]  A. Caccianiga,et al.  The XBS sample of type 1 AGNs: Radio loudness vs. physical parameters , 2009, 0909.4165.

[27]  G. Ghisellini,et al.  General physical properties of bright Fermi blazars , 2009, 0909.0932.

[28]  Laeff,et al.  CONSTRAINING THE SPIN OF THE BLACK HOLE IN FAIRALL 9 WITH SUZAKU , 2009, 0908.0013.

[29]  A. Perego,et al.  Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc , 2009, 0907.3742.

[30]  Y. Zlochower,et al.  Remnant masses, spins and recoils from the merger of generic black hole binaries , 2009, 0904.3541.

[31]  Predicting the direction of the final spin from the coalescence of two black holes , 2009, 0904.2577.

[32]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[33]  R. Subrahmanyan,et al.  THE GENESIS OF MORPHOLOGIES IN EXTENDED RADIO SOURCES: X-SHAPES, OFF-AXIS DISTORTIONS, AND GIANT RADIO SOURCES , 2008, 0811.1907.

[34]  F. Shankar,et al.  Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity , 2008 .

[35]  S. McWilliams,et al.  Modeling Kicks from the Merger of Generic Black Hole Binaries , 2008, 0802.0416.

[36]  Marta Volonteri,et al.  Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.

[37]  F. Shankar,et al.  Dependence of the BALQSO fraction on Radio Luminosity , 2008, 0801.4379.

[38]  D. Ryu,et al.  Propagation of Ultra-High-Energy Protons through the Magnetized Cosmic Web , 2008, 0801.0371.

[39]  G. Richards,et al.  Mass Functions of the Active Black Holes in Distant Quasars from the Sloan Digital Sky Survey Data Release 3 , 2007, 0801.0243.

[40]  A. Cavaliere,et al.  Optical-Radio Mapping: the Kinetic Efficiency of Radio-Loud AGNs , 2007, 0712.3004.

[41]  M. Volonteri,et al.  Compact massive objects in Virgo galaxies: the black hole population , 2007, 0710.5770.

[42]  Ernst Nils Dorband,et al.  The Final Spin from the Coalescence of Aligned-Spin Black Hole Binaries , 2007, 0710.3345.

[43]  P. Dokkum,et al.  Evidence of Cosmic Evolution of the Stellar Initial Mass Function , 2007, 0710.0875.

[44]  P. Marronetti,et al.  High-spin binary black hole mergers , 2007, 0709.2160.

[45]  P. Ricker,et al.  Structure and Evolution of Zel’dovich Pancakes as Probes of Dark Energy Models , 2007, 0707.2968.

[46]  G. Gavazzi,et al.  The HI content of early-type galaxies from the ALFALFA survey I. Catalogued HI sources in the Virgo cluster , 2007, 0709.2096.

[47]  C. Tout,et al.  Alignment and precession of a black hole with a warped accretion disc , 2007, 0708.2034.

[48]  Cambridge,et al.  Warp diffusion in accretion discs: a numerical investigation , 2007, 0708.1124.

[49]  Richard A. Matzner,et al.  Binary black holes: Spin dynamics and gravitational recoil , 2007, 0706.2541.

[50]  J. Schnittman Retaining Black Holes with Very Large Recoil Velocities , 2007, 0706.1548.

[51]  M. Volonteri Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.

[52]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[53]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[54]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[55]  A. King,et al.  A new type of long gamma-ray burst , 2006, astro-ph/0610452.

[56]  S. S. Institute,et al.  Physical Properties, Baryon Content, and Evolution of the Lyα Forest: New Insights from High-Resolution Observations at z ≲ 0.4 , 2006, astro-ph/0612275.

[57]  Ž. Ivezić,et al.  The Radio-Loud Fraction of Quasars is a Strong Function of Redshift and Optical Luminosity , 2006, astro-ph/0611453.

[58]  J. Pringle,et al.  Growing supermassive black holes by chaotic accretion , 2006, astro-ph/0609598.

[59]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[60]  A. Capetti,et al.  The host galaxy/AGN connection in nearby early-type galaxies. A new view of the origin of the radio- , 2006 .

[61]  J. Lasota,et al.  Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.

[62]  G. Pringle,et al.  The evolution of misaligned accretion discs and spinning black holes , 2006, astro-ph/0602306.

[63]  M. Magliocchetti,et al.  The role of black hole mass in quasar radio activity , 2006 .

[64]  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[65]  MULTIWAVELENGTH MONITORING OF THE DWARF SEYFERT 1 GALAXY NGC 4395. I. A REVERBERATION-BASED MEASUREMENT OF THE BLACK HOLE MASS , 2005, astro-ph/0506665.

[66]  G. V. Kleijn,et al.  A dichotomy in the orientation of dust and radio jets in nearby low-power radio galaxies , 2005, astro-ph/0502075.

[67]  The relationship between radio luminosity and black-hole mass in optically selected quasars , 2004, astro-ph/0408203.

[68]  R. Blandford,et al.  Black Hole Mass and Spin Coevolution by Mergers , 2002, astro-ph/0208484.

[69]  A. Kinney,et al.  The Orientation of Jets Relative to Dust Disks in Radio Galaxies , 2002, astro-ph/0204247.

[70]  A. Kinney,et al.  Jet Directions in Seyfert Galaxies , 2000, astro-ph/0002131.

[71]  J. Dunlop,et al.  A COMPARATIVE HST IMAGING STUDY OF THE HOST GALAXIES OF RADIO-QUIET QUASARS, RADIO-LOUD QUASARS AND RADIO GALAXIES - I , 1998, astro-ph/9809030.

[72]  Neil M. Nagar,et al.  The Relative Orientation of Nuclear Accretion and Galaxy Stellar Disks in Seyfert Galaxies , 1998, astro-ph/9901214.

[73]  A. Kinney,et al.  An Investigation into the Geometry of Seyfert Galaxies , 1997, astro-ph/9709146.

[74]  P. Scheuer,et al.  THE REALIGNMENT OF A BLACK HOLE MISALIGNED WITH ITS ACCRETION DISC , 1996 .

[75]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[76]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[77]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[78]  J. Bardeen,et al.  Kerr Metric Black Holes , 1970, Nature.