Electronic properties of tricoordinated phosphorus in hexagonal phosphininium compounds and molecular aromaticity

Calculations with B3LYP within quantum chemical density functional theory have been carried out for 1‐H‐phosphininium cation and a series of 1‐R‐phosphininium molecules (R = cyclopentadiene, α and β pyrroles, α and β phosphole, C5BH5 and CH2). The negative nuclear‐independent chemical shift values and the positive aromatic stabilization energies confirm that they are aromatic compounds. In particular, the 1‐H‐phosphininium cation even exhibits stronger aromatic character than the well‐known aromatic phosphinine. The aromatic substituents have strong capability to attract electrons. It is the conjugation and aromaticity that keeps the stability and conformations of the molecules investigated. Owing to the perturbation of the aromatic substituted groups, the predicted large T values and the enlarged HOMO‐LUMO gap of the phosphininium cation indicate that these compounds are expected in experiment. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007

[1]  H. Schaefer,et al.  Are Heterocyclic 2π-Electron Aromatic Systems HC−Ga(H)−CH, M[HGa−C(H)−GaH], [HGa−C(H)−GaH]-, HSi−Ga(H)−SiH, M[HGa−Si(H)−GaH] (M = Li, Na, and K), and [HGa−Si(H)−GaH]- Stable? , 1998 .

[2]  L. Nyulászi,et al.  The electronic structure and aromaticity of 1,3-azaphosphole and 1,3-azarsole , 1992 .

[3]  L. Nyulászi Aromatic Compounds with Planar Tricoordinate Phosphorus , 2000 .

[4]  Karl Jug,et al.  Aromaticity as a multi-dimensional phenomenon , 1991 .

[5]  F. Mathey Expanding the analogy between phosphorus-carbon and carbon-carbon double bonds , 1992 .

[6]  Paul von Ragué Schleyer,et al.  Aromaticity and Antiaromaticity in Five‐Membered C4H4X Ring Systems: “Classical” and “Magnetic” Concepts May Not Be “Orthogonal” , 1995 .

[7]  Haijun Jiao,et al.  What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..

[8]  G. Zerbi,et al.  Confinement potential and pi -electron delocalization in polyconjugated organic materials. , 1994, Physical review. B, Condensed matter.

[9]  Facts and artifacts about aromatic stability estimation , 2003 .

[10]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[11]  A. Katritzky,et al.  Aromaticity: a Theoretical Concept of Immense Practical Importance , 2000 .

[12]  A. Katritzky,et al.  To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.

[13]  M. Gordon,et al.  Potentially aromatic metallocycles , 1988 .

[14]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[15]  C. Bock,et al.  A molecular orbital study of ethylene and the all-trans conjugated polyenes: C4H6, C6H8, C8H10 and C10H12 , 1984 .

[16]  Robert G. Parr,et al.  New measures of aromaticity: absolute hardness and relative hardness , 1989 .

[17]  Alan R. Katritzky,et al.  AROMATICITY AS A QUANTITATIVE CONCEPT. 7. AROMATICITY REAFFIRMED AS A MULTIDIMENSIONAL CHARACTERISTIC , 1998 .

[18]  Audrey Moores,et al.  A 1-methyl-phosphininium compound: synthesis, X-ray crystal structure, and DFT calculations. , 2003, Angewandte Chemie.

[19]  D. B. Chesnut,et al.  Characterization of NMR Deshielding in Phosphole and the Phospholide Ion , 1994 .

[20]  R. Appel,et al.  Multiple bonds and low coordination in phosphorus chemistry , 1990 .

[21]  G. Frenking,et al.  The molecular structure of phosphabenzene. A theoretically predicted correction to the experimentally determined CC bond lengths , 1993 .

[22]  J. Alford,et al.  Isolation and properties of small-bandgap fullerenes , 1998, Nature.

[23]  R. Appel pπ-Double bonds between phosphorus and carbon - a challenge , 1987 .

[24]  R. E. Weston Vibrational Energy Level Splitting and Optical Isomerism in Pyramidal Molecules of the Type XY31 , 1954 .

[25]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[26]  L. Nyulászi EFFECTS OF SUBSTITUENTS ON THE AROMATIZATION OF PHOSPHOLE , 1995 .

[27]  L Nyulászi,et al.  Aromaticity of phosphorus heterocycles. , 2001, Chemical reviews.

[28]  L. Nyulászi,et al.  A new look at the similarities of the conjugative ability and reactivity of -p=C and C=C double bonding , 1993 .

[29]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[30]  P. Schleyer,et al.  The Aromaticity of Polyphosphaphospholes Decreases with the Pyramidality of the Tricoordinate Phosphorus. , 1998, Inorganic chemistry.

[31]  Douglas J. Klein,et al.  Favorable structures for higher fullerenes , 1992 .

[32]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[33]  D. Szieberth,et al.  PHOSPHININ-2-YLIDENE : AN ISOMER OF PHOSPHININE WITH A PHOSPHINOCARBENE UNIT , 1995 .

[34]  C. W. Bird THE RELATIONSHIP OF CLASSICAL AND MAGNETIC CRITERIA OF AROMATICITY , 1996 .

[35]  F. Mathey Phospha-organic chemistry: panorama and perspectives. , 2003, Angewandte Chemie.

[36]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[37]  Alan R. Katritzky,et al.  Aromaticity as a Quantitative Concept. 1. A Statistical Demonstration of the Orthogonality of "Classical" and "Magnetic" Aromaticity in Five- and Six-Membered Heterocycles , 1989 .

[38]  D. Manolopoulos,et al.  Theoretical studies of the fullerenes: C34 to C70 , 1991 .

[39]  J. Aihara,et al.  Weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes , 1999 .

[40]  K. Dimroth,et al.  1,2,4,6-Tetraphenylphosphininium Tetrachloroaluminate, the First Phosphininium Salt Analogous to the Pyridinium Salts†‡ , 1984 .

[41]  C. Bock,et al.  An alternative approach to the problem of assessing stabilization energies in cyclic conjugated hydrocarbons , 1975 .

[42]  G. Frenking,et al.  N-Heterocyclic Carbene, Silylene, and Germylene Complexes of MCl (M = Cu, Ag, Au). A Theoretical Study1 , 1998 .

[43]  C. Bock,et al.  Empirical resonance energies for benzene and pyridine , 1985 .

[44]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[45]  N. D. Epiotis,et al.  On the aromaticity of phospholes and arsoles , 1976 .

[46]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .