Exploring the foundations of the physical universe with space tests of the equivalence principle

We present the scientific motivation for future space tests of the equivalence principle, and in particular the universality of free fall, at the 10− 17 level or better. Two possible mission scenarios, one based on quantum technologies, the other on electrostatic accelerometers, that could reach that goal are briefly discussed. This publication is a White Paper written in the context of the Voyage 2050 ESA Call for White Papers.

[1]  P. Jordan Formation of the Stars and Development of the Universe , 1949, Nature.

[2]  L. Schiff On Experimental Tests of the General Theory of Relativity , 1960 .

[3]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[4]  R. Dicke The Theoretical Significance of Experimental Relativity , 1966 .

[5]  K. Thorne,et al.  Foundations for a Theory of Gravitation Theories , 1973 .

[6]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.

[7]  Gabriele Veneziano,et al.  Dilaton couplings at large distances , 1988 .

[8]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[9]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[10]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[11]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[12]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[13]  S. Dimopoulos,et al.  Macroscopic forces from supersymmetry , 1996, hep-ph/9602350.

[14]  Clive C. Speake,et al.  Forces and force gradients due to patch fields and contact-potential differences , 1996 .

[15]  Sean M. Carroll QUINTESSENCE AND THE REST OF THE WORLD : SUPPRESSING LONG-RANGE INTERACTIONS , 1998 .

[16]  S. Dimopoulos,et al.  Millimetre-Range Forces in Superstring Theories with Weak-Scale Compactification , 1997, hep-ph/9710204.

[17]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[18]  R. R. Caldwell,et al.  A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state , 1999, astro-ph/9908168.

[19]  P. Steinhardt,et al.  Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration , 2000, Physical review letters.

[20]  M. Porrati,et al.  4D Gravity on a Brane in 5D Minkowski Space , 2000, hep-th/0005016.

[21]  T. Chiba,et al.  Kinetically driven quintessence , 1999, astro-ph/9912463.

[22]  Large and infinite extra dimensions , 2001, hep-ph/0104152.

[23]  Paul J. Steinhardt,et al.  Essentials of k essence , 2000, astro-ph/0006373.

[24]  Pierre Touboul,et al.  The MICROSCOPE space mission , 2001 .

[25]  J. Blaser Can the equivalence principle be tested with freely orbiting masses , 2001 .

[26]  An Alternative to quintessence , 2001, gr-qc/0103004.

[27]  O. Bertolami,et al.  Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification , 2002, gr-qc/0202064.

[28]  G Ferrari,et al.  Collisional properties of ultracold K-Rb mixtures. , 2002, Physical review letters.

[29]  Unification of dark matter and dark energy: The Inhomogeneous Chaplygin gas , 2001, astro-ph/0111325.

[30]  M. Kasevich,et al.  High-order inertial phase shifts for time-domain atom interferometers , 2002, quant-ph/0204102.

[31]  J. Khoury,et al.  Chameleon Cosmology , 2003, astro-ph/0309411.

[32]  A. Nelson,et al.  TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW , 2003, hep-ph/0307284.

[33]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[34]  Detecting dark energy in orbit: The cosmological chameleon , 2004, astro-ph/0408415.

[35]  W. Ertmer,et al.  HYPER: A Satellite Mission in Fundamental Physics Based on High Precision Atom Interferometry , 2004 .

[36]  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[37]  C. Bordé,et al.  Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors , 2004 .

[38]  S. Reynaud,et al.  The Casimir effect within scattering theory , 2006, quant-ph/0611103.

[39]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[40]  Stephan Theil,et al.  Step (satellite test of the equivalence principle) , 2007 .

[41]  A. Clairon,et al.  Influence of lasers propagation delay on the sensitivity of atom interferometers , 2007 .

[42]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[43]  M. Inguscio,et al.  Double species Bose-Einstein condensate with tunable interspecies interactions. , 2008, Physical review letters.

[44]  Srinivas Bettadpur,et al.  Precise accelerometry onboard the GRACE gravity field satellite mission , 2008 .

[45]  Benjamin Canuel,et al.  Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer , 2008, IEEE Transactions on Instrumentation and Measurement.

[46]  Luigi Cacciapuoti,et al.  Space clocks and fundamental tests: The ACES experiment , 2009 .

[47]  S. Theil,et al.  GAUGE: the GrAnd Unification and Gravity Explorer , 2009 .

[48]  A. Landragin,et al.  Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. , 2009, Physical review letters.

[49]  A. Landragin,et al.  Comparison between two mobile absolute gravimeters: optical versus atomic interferometers , 2010, 1005.0357.

[50]  Massimo Inguscio,et al.  A Compact Atom Interferometer for Future Space Missions , 2010 .

[51]  T. Damour,et al.  Equivalence Principle Violations and Couplings of a Light Dilaton , 2010, 1007.2792.

[52]  Ivan Prochazka,et al.  Time measurement device with four femtosecond stability , 2010 .

[53]  A. Peters,et al.  Bose-Einstein Condensation in Microgravity , 2010, Science.

[54]  C. Amsler,et al.  Note on Scalar Mesons , 2010 .

[55]  Roy Maartens,et al.  Brane-World Gravity , 2004, Living reviews in relativity.

[56]  M. Doser AEGIS: An experiment to measure the gravitational interaction between matter and antimatter , 2010 .

[57]  Achim Peters,et al.  A precision measurement of the gravitational redshift by the interference of matter waves , 2010, Nature.

[58]  V. V. Fedorov,et al.  Short-range fundamental forces , 2011 .

[59]  P. Altin,et al.  Cold-atom gravimetry with a Bose-Einstein condensate , 2010, 1011.5804.

[60]  U. Hugentobler,et al.  GPS-derived orbits for the GOCE satellite , 2011 .

[61]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[62]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[63]  J. Tasson,et al.  Matter-gravity couplings and Lorentz violation , 2010, 1006.4106.

[64]  A. Landragin,et al.  The influence of transverse motion within an atomic gravimeter , 2011 .

[65]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[66]  Peter Wolf,et al.  Reply to comment on: ‘Does an atom interferometer test the gravitational redshift at the Compton frequency?’ , 2010, 1201.1778.

[67]  P. Perez,et al.  The GBAR experiment: gravitational behaviour of antihydrogen at rest , 2012 .

[68]  Pierre Touboul,et al.  The MICROSCOPE experiment, ready for the in-orbit test of the equivalence principle , 2012 .

[69]  D. Giulini Equivalence Principle, Quantum Mechanics, and Atom-Interferometric Tests , 2011, 1105.0749.

[70]  A. Trzupek,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[71]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[72]  T. Damour Theoretical aspects of the equivalence principle , 2012, 1202.6311.

[73]  Shau-Yu Lan,et al.  Influence of the Coriolis force in atom interferometry. , 2011, Physical review letters.

[74]  T. R. Saravanan,et al.  ‘Galileo Galilei’ (GG): space test of the weak equivalence principle to 10−17 and laboratory demonstrations , 2012 .

[75]  F. Sorrentino,et al.  Precision Gravity Tests with Atom Interferometry in Space , 2013 .

[76]  Josef Blazej,et al.  Note: Solid state photon counters with sub-picosecond timing stability. , 2013, The Review of scientific instruments.

[77]  P. Touboul,et al.  Validation of the in-flight calibration procedures for the MICROSCOPE space mission , 2013, 1707.07630.

[78]  H. Müller,et al.  Equivalence principle and bound kinetic energy. , 2013, Physical review letters.

[79]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[80]  W. Schleich,et al.  Overcoming loss of contrast in atom interferometry due to gravity gradients , 2014, 1401.7699.

[81]  G. Tino,et al.  Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.

[82]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[83]  R. Reasenberg A new class of equivalence principle test masses, with application to SR-POEM , 2014 .

[84]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[85]  Ulrich Johann,et al.  Design of a dual species atom interferometer for space , 2014, 1412.2713.

[86]  M. Kasevich,et al.  Quantum superposition at the half-metre scale , 2015, Nature.

[87]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[88]  S. Capozziello,et al.  Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.

[89]  A. Landragin,et al.  Correlative methods for dual-species quantum tests of the weak equivalence principle , 2015, 1503.08423.

[90]  Wolfgang Ertmer,et al.  Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer , 2015, 1503.01213.

[91]  Peter Wolf,et al.  Analysis of Sun/Moon gravitational redshift tests with the STE-QUEST space mission , 2015, 1509.02854.

[92]  V. Flambaum,et al.  Can Dark Matter Induce Cosmological Evolution of the Fundamental Constants of Nature? , 2015, Physical review letters.

[93]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[94]  W. Schleich,et al.  Representation-free description of light-pulse atom interferometry including non-inertial effects , 2015, 1512.00260.

[95]  M. Popp,et al.  A high-flux BEC source for mobile atom interferometers , 2015, 1501.00403.

[96]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[97]  D. Holleville,et al.  Development of a strontium optical lattice clock for the SOC mission on the ISS , 2015 .

[98]  J. T. Childers,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[99]  K. V. Tilburg,et al.  Searching for dilaton dark matter with atomic clocks , 2014, 1405.2925.

[100]  S. Chiow,et al.  Quantum test of the equivalence principle and space-time aboard the International Space Station , 2015, 1510.07780.

[101]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[102]  A. Landragin,et al.  Dual matter-wave inertial sensors in weightlessness , 2016, Nature Communications.

[103]  J. Rudolph,et al.  Matter-wave optics with Bose-Einstein condensates in microgravity , 2016 .

[104]  A. Nobili Fundamental limitations to high-precision tests of the universality of free fall by dropping atoms , 2015, 1503.01074.

[105]  G. Rosi Challenging the ‘Big G’ measurement with atoms and light , 2016 .

[106]  M. Ritsch-Marte,et al.  Attractive force on atoms due to blackbody radiation , 2017, 1704.03577.

[107]  Albert Roura,et al.  Circumventing Heisenberg's Uncertainty Principle in Atom Interferometry Tests of the Equivalence Principle. , 2015, Physical review letters.

[108]  F. Sorrentino,et al.  Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states , 2017, Nature Communications.

[109]  F. P. D. Santos,et al.  Differential phase extraction in dual interferometers exploiting the correlation between classical and quantum sensors , 2017, 1712.02071.

[110]  C. Guerlin,et al.  Determination of a high spatial resolution geopotential model using atomic clock comparisons , 2016, Journal of Geodesy.

[111]  P. Fayet MICROSCOPE limits for new long-range forces and implications for unified theories , 2017, 1712.00856.

[112]  Hanns Selig,et al.  MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle. , 2017, Physical review letters.

[113]  G. Tino,et al.  Canceling the Gravity Gradient Phase Shift in Atom Interferometry. , 2017, Physical review letters.

[114]  Achim Peters,et al.  Space-borne Bose–Einstein condensation for precision interferometry , 2018, Nature.

[115]  P. Schmidt,et al.  Atomic clocks for geodesy. , 2018, Reports on progress in physics. Physical Society.

[116]  Uwe Sterr,et al.  Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms , 2018, Physical Review A.

[117]  Chenghui Yu,et al.  Measurement of the fine-structure constant as a test of the Standard Model , 2018, Science.

[118]  A. Landragin,et al.  Interleaved atom interferometry for high-sensitivity inertial measurements , 2018, Science Advances.

[119]  C. Le Poncin-Lafitte,et al.  Atomic clock ensemble in space (ACES) data analysis , 2017, 1709.06491.

[120]  J. P. López-Zaragoza,et al.  Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz. , 2018, Physical review letters.

[121]  O. Minazzoli,et al.  Violation of the equivalence principle from light scalar dark matter , 2018, Physical Review D.

[122]  Robert J. Thompson,et al.  NASA’s Cold Atom Lab (CAL): system development and ground test status , 2018, npj Microgravity.

[123]  J. Lemoine,et al.  Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data , 2018, Nature Geoscience.

[124]  R. Geiger,et al.  Proposal for a Quantum Test of the Weak Equivalence Principle with Entangled Atomic Species. , 2018, Physical review letters.

[125]  P Bouyer,et al.  Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry , 2019, Classical and Quantum Gravity.

[126]  J. P. Marburger,et al.  The Bose-Einstein Condensate and Cold Atom Laboratory , 2019, EPJ Quantum Technology.

[127]  S. Pires,et al.  Space test of the equivalence principle: first results of the MICROSCOPE mission , 2019, Classical and Quantum Gravity.

[128]  Philippe Bouyer,et al.  Taking atom interferometric quantum sensors from the laboratory to real-world applications , 2019, Nature Reviews Physics.

[129]  C. Le Poncin-Lafitte,et al.  Gravitational redshift test with the future ACES mission , 2019, Classical and Quantum Gravity.

[130]  David Robertson,et al.  LISA Pathfinder platform stability and drag-free performance , 2018, Physical Review D.

[131]  M. Mehmet,et al.  Optomechanical resonator-enhanced atom interferometry , 2019, 1902.02867.

[132]  M. Prevedelli,et al.  Phase shift in atom interferometers: Corrections for nonquadratic potentials and finite-duration laser pulses , 2018, Physical Review A.

[133]  S. Capozziello,et al.  SAGE: A proposal for a space atomic gravity explorer , 2019, The European Physical Journal D.

[134]  S. Abend,et al.  Atomic source selection in space-borne gravitational wave detection , 2018, New Journal of Physics.

[135]  Martin Gohlke,et al.  In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. , 2019, Physical review letters.

[136]  P. Fayet MICROSCOPE limits on the strength of a new force with comparisons to gravity and electromagnetism , 2018, Physical Review D.

[137]  A. Bertoldi,et al.  All-Optical Bose-Einstein Condensates in Microgravity. , 2019, Physical review letters.

[138]  W. Ertmer,et al.  Resolution of the colocation problem in satellite quantum tests of the universality of free fall , 2020, Physical Review D.

[139]  T. Freegarde,et al.  Loading and cooling in an optical trap via hyperfine dark states , 2019, Physical Review Research.

[140]  J. Kohel,et al.  Observation of Bose–Einstein condensates in an Earth-orbiting research lab , 2020, Nature.

[141]  M. Kasevich,et al.  Atom-Interferometric Test of the Equivalence Principle at the 10^{-12} Level. , 2020, Physical review letters.

[142]  S. Capozziello,et al.  Precision gravity tests and the Einstein Equivalence Principle , 2020, 2002.02907.