Distributed Quantum Computing with QMPI

Practical applications of quantum computers require millions of physical qubits and it will be challenging for individual quantum processors to reach such qubit numbers. It is therefore timely to investigate the resource requirements of quantum algorithms in a distributed setting, where multiple quantum processors are interconnected by a coherent network. We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms. In turn, these implementations can be used for testing, debugging, and resource estimation. In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ. The model is inspired by the classical LogP model, making it useful to inform algorithmic decisions when programming distributed quantum computers. Specifically, we consider several optimizations of two quantum algorithms for problems in physics and chemistry, and we detail their effects on performance in the SENDQ model.

[1]  Andrew Steane,et al.  Fast quantum logic gates with trapped-ion qubits , 2017, Nature.

[2]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[3]  Avishay Tal,et al.  Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits , 2019, STOC.

[4]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[5]  Zhe Sun,et al.  Proposal for a quantum interface between photonic and superconducting qubits , 2017, 1707.02195.

[6]  Jesper Larsson Träff,et al.  Parallel Prefix (Scan) Algorithms for MPI , 2006, PVM/MPI.

[7]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[9]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[10]  Ramesh Subramonian,et al.  LogP: towards a realistic model of parallel computation , 1993, PPOPP '93.

[11]  E. Knill,et al.  Simulating physical phenomena by quantum networks , 2001, quant-ph/0108146.

[12]  Margaret Martonosi,et al.  ScaffCC: Scalable compilation and analysis of quantum programs , 2015, Parallel Comput..

[13]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[14]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[15]  Torsten Hoefler,et al.  A Case for Standard Non-blocking Collective Operations , 2007, PVM/MPI.

[16]  Robert Spalek,et al.  Quantum Fan-out is Powerful , 2005, Theory Comput..

[17]  Julio A. de Oliveira Filho,et al.  A link layer protocol for quantum networks , 2019, SIGCOMM.

[18]  Daniel Litinski,et al.  Magic State Distillation: Not as Costly as You Think , 2019, Quantum.

[19]  Maximilian Baader,et al.  Silq: a high-level quantum language with safe uncomputation and intuitive semantics , 2020, PLDI.

[20]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[21]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[24]  Samuel J. Lomonaco, Jr.,et al.  Distributed quantum computing: a distributed Shor algorithm , 2004, SPIE Defense + Commercial Sensing.

[25]  J. Cirac,et al.  IDEAL QUANTUM COMMUNICATION OVER NOISY CHANNELS : A QUANTUM OPTICAL IMPLEMENTATION , 1997, quant-ph/9702036.

[26]  Rodney Van Meter,et al.  Communication Links for Distributed Quantum Computation , 2007, IEEE Transactions on Computers.

[27]  A. Blais,et al.  Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems. , 2020, Physical review letters.

[28]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[29]  Stephen DiAdamo,et al.  Distributed Quantum Computing and Network Control for Accelerated VQE , 2021, IEEE Transactions on Quantum Engineering.

[30]  Axel Dahlberg,et al.  SimulaQron—a simulator for developing quantum internet software , 2017, Quantum Science and Technology.

[31]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[32]  D. Walker,et al.  Mpi: a Standard Message Passing Interface 1 Mpi: a Standard Message Passing Interface , 1996 .

[33]  David A. B. Miller,et al.  Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies , 2021 .

[34]  Damian S. Steiger,et al.  Quantum computing enhanced computational catalysis , 2020, Physical Review Research.

[35]  R. V. Meter Architecture of a quantum multicomputer optimized for Shor's factoring algorithm , 2006, quant-ph/0607065.

[36]  Rodney Van Meter,et al.  Arithmetic on a distributed-memory quantum multicomputer , 2006, JETC.

[37]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[38]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[39]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[40]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[41]  Mathias Soeken,et al.  Improved quantum circuits for elliptic curve discrete logarithms , 2020, IACR Cryptol. ePrint Arch..

[42]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[43]  Joonho Lee,et al.  Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction , 2020, PRX Quantum.

[44]  Samuel J. Lomonaco,et al.  Generalized GHZ States and Distributed Quantum Computing , 2004 .

[45]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[46]  Rolf Hempel,et al.  The MPI Standard for Message Passing , 1994, HPCN.

[47]  Noah Linden,et al.  Nonlocal content of quantum operations , 2001 .

[48]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[49]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[50]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Simon J. Devitt,et al.  The Path to Scalable Distributed Quantum Computing , 2016, Computer.

[52]  Martin Rötteler,et al.  Q#: Enabling Scalable Quantum Computing and Development with a High-level DSL , 2018, RWDSL2018.

[53]  Benoît Valiron,et al.  Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target , 2015, Quantum Inf. Process..

[54]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[55]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[56]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[57]  A. Fiore,et al.  Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state , 2018, Nature physics.

[58]  Liang Jiang,et al.  Intracity quantum communication via thermal microwave networks , 2016, 1611.10241.

[59]  Kenneth Goodenough,et al.  Protocols for Creating and Distilling Multipartite GHZ States With Bell Pairs , 2020, IEEE Transactions on Quantum Engineering.

[60]  J. Whitfield,et al.  Local spin operators for fermion simulations , 2016, 1605.09789.

[61]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.