On another approach to the Schur-Cohn criterion
暂无分享,去创建一个
[1] E. Parzen. An Approach to Time Series Analysis , 1961 .
[2] M. Marden. Geometry of Polynomials , 1970 .
[3] I. Gohberg,et al. Convolution Equations and Projection Methods for Their Solution , 1974 .
[4] M. Morf,et al. Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.
[5] A. Cohn,et al. Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .
[6] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .
[7] A. Berkhout,et al. On the Minimtm Pease Criterion of Sapnled Signals , 1973 .
[8] H. M. Paynter,et al. Inners and Stability of Dynamic Systems , 1975 .
[9] A. J Berkhout. Correspondence item: Stability and least-squares estimation , 1975 .
[10] I︠a︡. L. Geronimus. Polynomials orthogonal on a circle and their applications , 1954 .
[11] Marcello Pagano,et al. WHEN IS AN AUTOREGRESSIVE SCHEME STATIONARY , 1973 .