Incorporating Noise Factors Into Experiments With Censored Data

Recent advances in quality technology have resulted from considering the variation of a response variable as well as its mean value. Current research dealing with the analysis of data involving noise factors has mostly been confined to models with normally distributed responses. The research described herein focuses on development of methodology for time-to-event data. Once model parameters have been estimated, optimization of the pertinent aspects of the event time distribution can be used to reduce the effect of the noise factors.

[1]  W. Meeker Accelerated Testing: Statistical Models, Test Plans, and Data Analyses , 1991 .

[2]  M. Hamada,et al.  Using statistically designed experiments to improve reliability and to achieve robust reliability , 1995 .

[3]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[4]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[5]  Raymond H. Myers,et al.  Response Surface Methods and the Use of Noise Variables , 1997 .

[6]  J. Engel,et al.  A generalized linear modeling approach to robust design , 1996 .

[7]  Douglas C. Montgomery,et al.  A Nonlinear Programming Solution to the Dual Response Problem , 1993 .

[8]  Lloyd W. Condra,et al.  Reliability improvement with design of experiments , 1993 .

[9]  R. N. Kackar Response: Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[10]  Madhav S. Phadke Design optimization case studies , 1986, AT&T Technical Journal.

[11]  K. Berk Comparing Subset Regression Procedures , 1978 .

[12]  M Hamada,et al.  Analysis of censored data from higly fractionated experiments , 1991 .

[13]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[14]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[15]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[16]  Ronald E. Glaser,et al.  Estimation for a weibull accelerated life testing model , 1984 .

[17]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[18]  Ewan Macarthur,et al.  Accelerated Testing: Statistical Models, Test Plans, and Data Analysis , 1990 .

[19]  R. N. Kackar Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[20]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[21]  R. Gunst Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[22]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[23]  Peter R. Nelson,et al.  Dual Response Optimization via Direct Function Minimization , 1996 .

[24]  Philip E. Gill,et al.  Practical optimization , 1981 .

[25]  E. D. Campbell,et al.  Combination of 5-fluorouracil and cyclophosphamide in L1210 and P388 leukemias with changes in optimum treatments as a function of the age of the L1210 tumor at first treatment. , 1987, Cancer investigation.

[26]  Jerome Sacks,et al.  Computer Experiments for Quality Control by Parameter Design , 1990 .