Integrable semiconductor optical correlator, parametric spectrometer for communication systems

A broadband integrable waveguide correlator and parametric spectrometer is analyzed both theoretically and experimentally. The correlator can measure pulsewidths from subpicosecond to tens of picoseconds centered at wavelengths of 1.06 to 1.7 mu m without any mechanical alignment. The parametric waveguide spectrometer is shown to resolve not only the mode of a 1.3- mu m Fabry-Perot laser diode but also the shift of the modes as a function of bias current. The improvement of these integrable waveguide structures and their possible use in laser stabilization, the defining of fixed frequency channels, and other applications for coherent communication systems are also discussed. >

[1]  D. A. Kleinman,et al.  Nonlinear Dielectric Polarization in Optical Media , 1962 .

[2]  Y. Shen,et al.  Coherent second-harmonic generation by counterpropagating surface plasmons. , 1979, Optics letters.

[3]  Hirokazu Hori,et al.  Frequency-Locking of a GaAlAs Laser to a Doppler-Free Spectrum of the Cs-D2Line , 1981 .

[4]  Shyh Wang,et al.  Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers , 1989 .

[5]  A. Yariv,et al.  Quantum Fluctuations and Noise in Parametric Processes. I. , 1961 .

[6]  G I Stegeman,et al.  Nondegenerate four-wave mixing in integrated optics. , 1979, Optics letters.

[7]  M. Adams,et al.  Optical waves in crystals , 1984, IEEE Journal of Quantum Electronics.

[8]  George I. Stegeman,et al.  Enhanced second‐harmonic generation by counter‐propagating guided optical waves , 1981 .

[9]  L. C. West,et al.  First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well , 1985 .

[10]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[11]  D. Vakhshoori,et al.  Demonstration of an AlGaAs/GaAs integrable optical correlator using surface‐emitting second‐harmonic generation , 1988 .

[12]  R. D. Standley,et al.  Integrated optical circuits , 1970 .

[13]  Ming C. Wu,et al.  Surface‐emitting second‐harmonic generator for waveguide study , 1988 .

[14]  Unterrainer,et al.  Two-photon absorption in GaAs/AlGaAs multiple quantum wells. , 1989, Physical review letters.

[15]  Henry M. Otte,et al.  Crystal symmetry and physical properties. , 1966 .

[16]  M. Islam,et al.  Integrable Optical Correlator; its Temporal Resolution, Spectral Response, and Power Sensitivity , 1989, Nonlinear Guided-Wave Phenomena Physics and Applications.

[17]  N. Bloembergen,et al.  TOTAL REFLECTION PHENOMENA IN SECOND HARMONIC GENERATION OF LIGHT. , 1969 .

[18]  R. Chang,et al.  Measurement of the nonlinear susceptibility dispersion by dye lasers , 1971 .

[19]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[20]  R. Normandin,et al.  Picosecond signal processing with planar, nonlinear integrated optics , 1980 .

[21]  R. Logan,et al.  Observation of enhanced single longitudinal mode operation in 1.5‐μm GaInAsP erbium‐doped semiconductor injection lasers , 1986 .

[22]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[23]  R. Normandin,et al.  Signal Processing with Nonlinear Integrated Optics , 1980 .

[24]  M. Suzuki,et al.  Simultaneous stabilization of the frequency and power of an AlGaAs semiconductor laser by use of the optogalvanic effect of krypton , 1983 .