One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes.

Carbon-containing NiCo2S4 hollow-nanoflake structures were fabricated by a one-step solvothermal method using CS2 as a single source for sulfidation and carbonization. The reaction mechanism for the hollow structure with carbon residues was explored based on the formation of a bis(dithiocarbamate)-metal complex and the Kirkendall effect during solvothermal synthesis. The NiCo2S4 nanoflake electrode exhibited a high specific capacitance of 1722 F g-1 (specific capacity 688.8 C g-1) at a current density of 1 A g-1 and an excellent cycling stability (capacity retention of 98.8% after 10 000 cycles). The as-fabricated asymmetric supercapacitor based on NiCo2S4 nanoflakes and activated carbon electrodes revealed a high energy density of 38.3 W h kg-1 and a high power density of 8.0 kW kg-1 with a capacitance retention of 91.5% and a coulombic efficiency of 95.6% after 5000 cycles, highlighting its great potential for practical supercapacitor applications.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  S. Mohamed,et al.  Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications , 2017 .

[3]  Shichun Mu,et al.  Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices , 2017 .

[4]  Nageh K. Allam,et al.  One-step, calcination-free synthesis of zinc cobaltite nanospheres for high-performance supercapacitors , 2017 .

[5]  Di Chen,et al.  Facile Growth of Caterpillar-like NiCo2S4 Nanocrystal Arrays on Nickle Foam for High-Performance Supercapacitors. , 2017, ACS applied materials & interfaces.

[6]  Jae-Jin Shim,et al.  Microwave-assisted binder-free synthesis of 3D Ni-Co-Mn oxide nanoflakes@Ni foam electrode for supercapacitor applications , 2017 .

[7]  D. He,et al.  Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors , 2017 .

[8]  S. Komarneni,et al.  Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell , 2017 .

[9]  Jinlong Yang,et al.  Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties. , 2017, Chemical communications.

[10]  Shaochun Tang,et al.  General Controlled Sulfidation toward Achieving Novel Nanosheet‐Built Porous Square‐FeCo2S4‐Tube Arrays for High‐Performance Asymmetric All‐Solid‐State Pseudocapacitors , 2017 .

[11]  V. H. Nguyen,et al.  Layer-structured nanohybrid MoS2@rGO on 3D nickel foam for high performance energy storage applications , 2017 .

[12]  H. Khani,et al.  Iron Oxide Nanosheets and Pulse-Electrodeposited Ni-Co-S Nanoflake Arrays for High-Performance Charge Storage. , 2017, ACS applied materials & interfaces.

[13]  Yongqiang Yang,et al.  NiCo2S4/tryptophan-functionalized graphene quantum dot nanohybrids for high-performance supercapacitors , 2017 .

[14]  P. C. Ford,et al.  Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? , 2017, Chemical Society reviews.

[15]  T. Shi,et al.  Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors , 2016, Scientific Reports.

[16]  M. Jaroniec,et al.  Synthesis and applications of porous non-silica metal oxide submicrospheres. , 2016, Chemical Society reviews.

[17]  D. McNulty,et al.  Supercapattery Based on Binder-Free Co3(PO4)2·8H2O Multilayer Nano/Microflakes on Nickel Foam. , 2016, ACS applied materials & interfaces.

[18]  C. Wong,et al.  1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability. , 2016, Nanoscale.

[19]  G. Yin,et al.  Construction of a Hierarchical NiCo2S4@PPy Core-Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor. , 2016, ACS applied materials & interfaces.

[20]  Li Ruiyi,et al.  Hybrid of NiCo2S4 and nitrogen and sulphur-functionalized multiple graphene aerogel for application in supercapacitors and oxygen reduction with significant electrochemical synergy , 2016 .

[21]  Jie Han,et al.  NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: In-situ synthesis and enhanced capacitive performance. , 2016, Journal of colloid and interface science.

[22]  P. Wen,et al.  An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid , 2016 .

[23]  C. Pan,et al.  Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors , 2016, Scientific Reports.

[24]  Peng Sun,et al.  In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors , 2016 .

[25]  C. Catlow,et al.  Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors. , 2016, Nanoscale.

[26]  V. H. Nguyen,et al.  3D hierarchical mesoporous NiCo2S4@Ni(OH)2 core–shell nanosheet arrays for high performance supercapacitors , 2016 .

[27]  G. Wen,et al.  Hierarchically constructed NiCo2S4@Ni(1−x)Cox(OH)2 core/shell nanoarrays and their application in energy storage , 2016, Nanotechnology.

[28]  Juan-Yu Yang,et al.  Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors , 2016 .

[29]  Yufeng Zhao,et al.  Construction of a novel hierarchical structured NH₄-Co-Ni phosphate toward an ultrastable aqueous hybrid capacitor. , 2016, Nanoscale.

[30]  X. Lou,et al.  Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage , 2016 .

[31]  Rujia Zou,et al.  Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam , 2016, Scientific Reports.

[32]  Weihua Liu,et al.  In situ growth of urchin-like NiCo2S4 hexagonal pyramid microstructures on 3D graphene nickel foam for enhanced performance of supercapacitors , 2016 .

[33]  Yufeng Zhao,et al.  Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability. , 2016, ACS applied materials & interfaces.

[34]  V. H. Nguyen,et al.  Covalently bonded reduced graphene oxide/polyaniline composite for electrochemical sensors and capacitors , 2015 .

[35]  K. Kar,et al.  Hierarchically mesoporous carbon nanopetal based electrodes for flexible supercapacitors with super-long cyclic stability , 2015 .

[36]  Jianjun Jiang,et al.  Hierarchical Configuration of NiCo₂S₄ Nanotube@Ni-Mn Layered Double Hydroxide Arrays/Three-Dimensional Graphene Sponge as Electrode Materials for High-Capacitance Supercapacitors. , 2015, ACS applied materials & interfaces.

[37]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[38]  V. H. Nguyen,et al.  In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors , 2015 .

[39]  V. H. Nguyen,et al.  Hierarchical mesoporous graphene@Ni-Co-S arrays on nickel foam for high-performance supercapacitors , 2015 .

[40]  X. Lou,et al.  Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties , 2015, Nature Communications.

[41]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[42]  W. Liu,et al.  High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. , 2015, Small.

[43]  Kuei-Hsien Chen,et al.  Conducting polymer‐based flexible supercapacitor , 2015 .

[44]  Jun Yang,et al.  Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes , 2015 .

[45]  C. Catlow,et al.  Active Nature of Primary Amines during Thermal Decomposition of Nickel Dithiocarbamates to Nickel Sulfide Nanoparticles , 2014 .

[46]  Wei Hu,et al.  CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. , 2014, ACS applied materials & interfaces.

[47]  H. Alshareef,et al.  One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. , 2014, ACS nano.

[48]  Q. Yan,et al.  Nanostructured metal sulfides for energy storage. , 2014, Nanoscale.

[49]  Jianjun Jiang,et al.  In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance , 2014 .

[50]  J. Pu,et al.  Preparation and Electrochemical Characterization of Hollow Hexagonal NiCo2S4 Nanoplates as Pseudocapacitor Materials , 2014 .

[51]  X. Lou,et al.  Formation of Ni(x)Co(3-x)S₄ hollow nanoprisms with enhanced pseudocapacitive properties. , 2014, Angewandte Chemie.

[52]  X. Lou,et al.  Mixed transition-metal oxides: design, synthesis, and energy-related applications. , 2014, Angewandte Chemie.

[53]  Shuai Wang,et al.  Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. , 2014, Nano letters.

[54]  S. Ramakrishna,et al.  In situ growth of NiCo(2)S(4) nanosheets on graphene for high-performance supercapacitors. , 2013, Chemical communications.

[55]  Jianjun Jiang,et al.  Highly conductive NiCo₂S₄ urchin-like nanostructures for high-rate pseudocapacitors. , 2013, Nanoscale.

[56]  Jianjun Jiang,et al.  NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors , 2013 .

[57]  Long Hao,et al.  Carbonaceous Electrode Materials for Supercapacitors , 2013, Advanced materials.

[58]  L. Dai,et al.  Carbon nanomaterials for high- performance supercapacitors , 2013 .

[59]  Y. Miao,et al.  High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. , 2013, ACS applied materials & interfaces.

[60]  M. Azam,et al.  Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials , 2013 .

[61]  Zhanwei Xu,et al.  Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading , 2012, Nano Research.

[62]  W. Marsden I and J , 2012 .

[63]  M. Lu,et al.  Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage , 2012 .

[64]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[65]  C. Lokhande,et al.  Metal oxide thin film based supercapacitors , 2011 .

[66]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[67]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[68]  M. Yudasaka,et al.  Micrometer-sized graphitic balls produced together with single-wall carbon nanohorns. , 2005, The journal of physical chemistry. B.

[69]  K. Matyjaszewski,et al.  Effect of [PMDETA]/[Cu(I)] Ratio, Monomer, Solvent, Counterion, Ligand, and Alkyl Bromide on the Activation Rate Constants in Atom Transfer Radical Polymerization , 2003 .

[70]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[71]  J. Casado,et al.  Raman spectroscopic characterization of some commercially available carbon black materials , 1995 .

[72]  S. Jayaweera,et al.  Formation and reactivity of copper sulphide, part II, oxidation , 1989 .