Distributed and Lumped Parameter Models for Fuel Cells

The chapter presents a review of modeling techniques for three types of fuel cells that are gaining industrial importance, namely, polymer electrolyte membrane (PEMFC), direct methanol (DMFC), and solid oxide (SOFC) fuel cells (FCs). The models presented are both multidimensional, suitable for investigating distributions, gradients, and inhomogeneities inside the cells, and zero-dimensional, which allows for fast analyses of overall performance and can be easily interfaced with or embedded in other numerical tools, for example, for studying the interaction with static converters needed to control the electric power flow. Thermal dependence is considered in all models. Some special numerical approaches are presented, which allow facing specific problems. An example is the Proper Generalized Decomposition (PDG) that allows overcoming the challenges arising from the extreme aspect ratio of the thin electrolyte separating anode and cathode. The use of numerical modeling as part of identification techniques, particularly by means of stochastic optimization approaches, for extracting the material parameters from multiple in situ measurements is also discussed and examples are given. Merits and demerits of the different models are discussed.

[1]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[2]  Alain Guyot,et al.  Polymer electrolytes , 1985, Polymer Bulletin.

[3]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[4]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[5]  A. Parthasarathy,et al.  Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion® Interface—A Microelectrode Investigation , 1992 .

[6]  Keith Scott,et al.  Performance and modelling of a direct methanol solid polymer electrolyte fuel cell , 1997 .

[7]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[8]  Kai Sundmacher,et al.  Direct methanol polymer electrolyte fuel cell : analysis of charge and mass transfer in the vapour-liquid-solid system , 1999 .

[9]  R. Gemmen,et al.  Application of a New CFD Analysis Tool for SOFC Technology , 2001, Heat Transfer.

[10]  Hongtan Liu,et al.  A two-phase flow and transport model for the cathode of PEM fuel cells , 2002 .

[11]  A. Kulikovsky,et al.  The voltage–current curve of a direct methanol fuel cell: “exact” and fitting equations , 2002 .

[12]  Klaus Gärtner,et al.  Performance Modeling of a Direct Methanol Fuel Cell , 2003 .

[13]  Chao-Yang Wang,et al.  Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells , 2003 .

[14]  D. Stolten,et al.  Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs , 2003 .

[15]  M. Khaleel,et al.  Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks , 2003 .

[16]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[17]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[18]  Hang Guo,et al.  2D analytical model of a direct methanol fuel cell , 2004 .

[19]  Klaus Wippermann,et al.  Experimental evaluation and semi-empirical modeling of U/I characteristics and methanol permeation of a direct methanol fuel cell , 2004 .

[20]  Ned Djilali,et al.  Systematic parameter estimation for PEM fuel cell models , 2005 .

[21]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[22]  M. Mench,et al.  Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials , 2006 .

[23]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[24]  Hongtan Liu,et al.  A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell , 2007 .

[25]  A. Suleman,et al.  Numerical optimization of proton exchange membrane fuel cell cathodes , 2007 .

[26]  Tianshou Zhao,et al.  Three-dimensional two-phase mass transport model for direct methanol fuel cells , 2007 .

[27]  Wenpeng Liu,et al.  Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells , 2007 .

[28]  Amir Faghri,et al.  Transient modeling and analysis of a passive liquid-feed DMFC , 2008 .

[29]  Yang Wang,et al.  A semi-empirical method for electrically modeling of fuel cell: Executed on a direct methanol fuel cell , 2008 .

[30]  Matthew M. Mench,et al.  Fuel Cell Engines , 2008 .

[31]  Min Chen,et al.  A Compact Electrical Model for Microscale Fuel Cells Capable of Predicting Runtime and $I$–$V$ Polarization Performance , 2008, IEEE Transactions on Energy Conversion.

[32]  F. Moro,et al.  Optimal Design of Micro Direct Methanol Fuel Cells for Low-Power Applications , 2009, IEEE Transactions on Magnetics.

[33]  Piergiorgio Alotto,et al.  A coupled electro‐chemical model of a direct methanol fuel cell for portable electronic devices , 2009 .

[34]  Massimo Guarnieri,et al.  A Dynamic Circuit Model of a Small Direct Methanol Fuel Cell for Portable Electronic Devices , 2010, IEEE Transactions on Industrial Electronics.

[35]  Ravindra Datta,et al.  The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells , 2010 .

[36]  César A.C. Sequeira,et al.  Polymer electrolytes : fundamentals and applications , 2010 .

[37]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[38]  Piergiorgio Alotto,et al.  Multi-physic 3D dynamic modelling of polymer membranes with a proper generalized decomposition model reduction approach , 2011 .

[39]  Shohji Tsushima,et al.  In situ Diagnostics for Water Transport in Proton Exchange Membrane Fuel Cells , 2011 .

[40]  Qi Li,et al.  Parameter Identification for PEM Fuel-Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization , 2011, IEEE Transactions on Industrial Electronics.

[41]  Uday K. Chakraborty,et al.  PEM fuel cell modeling using differential evolution , 2012 .

[42]  Manuel A. Rodrigo,et al.  An easy parameter estimation procedure for modeling a HT-PEMFC , 2012 .

[43]  Fang Ye,et al.  Three-dimensional transient modeling and analysis of two-phase mass transfer in air-breathing cathode of a fuel cell , 2013 .

[44]  Wen-Yeau Chang Estimating equivalent circuit parameters of proton exchange membrane fuel cell using the current change method , 2013 .

[45]  Marco Sorrentino,et al.  A review on model-based diagnosis methodologies for PEMFCs , 2013 .

[46]  Piergiorgio Alotto,et al.  Stochastic Methods for Parameter Estimation of Multiphysics Models of Fuel Cells , 2014, IEEE Transactions on Magnetics.

[47]  Xuri Huang,et al.  Transient analysis of passive direct methanol fuel cells with different operation and design parameters , 2015 .

[48]  Piergiorgio Alotto,et al.  Modeling the performance of hydrogen–oxygen unitized regenerative proton exchange membrane fuel cells for energy storage , 2015 .

[49]  Piergiorgio Alotto,et al.  A selective hybrid stochastic strategy for fuel-cell multi-parameter identification , 2016 .

[50]  Zhengkai Tu,et al.  Parametric analysis and optimization of PEMFC system for maximum power and efficiency using MOEA/D , 2017 .

[51]  C. Colpan,et al.  Three dimensional modeling of a FE-DMFC short-stack , 2017 .

[52]  U. A. Hasran,et al.  Development of 2D multiphase non-isothermal mass transfer model for DMFC system , 2018, Energy.

[53]  Xuri Huang,et al.  A three-dimensional multi-phase numerical model of DMFC utilizing Eulerian-Eulerian model , 2018 .

[54]  S. Thombre,et al.  An integral mathematical model of liquid feed passive DMFCs with non-isothermal effects and charge conservation phenomenon , 2018 .

[55]  Guobin Zhang,et al.  Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review , 2018, Journal of Power Sources.

[56]  Ying Zhu,et al.  Adaptive operation strategy for voltage stability enhancement in active DMFCs , 2018 .

[57]  K. Visser,et al.  Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments , 2019, Applied Energy.

[58]  O. Deutschmann,et al.  Dynamic Modeling of Reversible Solid Oxide Cells , 2019, Chemie Ingenieur Technik.