Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries.

Exploration of advanced solid electrolytes with good interfacial stability toward electrodes is a highly relevant research topic for all-solid-state batteries. Here, we report PCL/SN blends integrating with PAN-skeleton as solid polymer electrolyte prepared by a facile method. This polymer electrolyte with hierarchical architectures exhibits high ionic conductivity, large electrochemical windows, high degree flexibility, good flame-retardance ability, and thermal stability (workable at 80 °C). Additionally, it demonstrates superior compatibility and electrochemical stability toward metallic Li as well as LiFePO4 cathode. The electrolyte/electrode interfaces are very stable even subjected to 4.5 V at charging state for long time. The LiFePO4/Li all-solid-state cells based on this electrolyte deliver high capacity, outstanding cycling stability, and superior rate capability better than those based on liquid electrolyte. This solid polymer electrolyte is eligible for next generation high energy density all-solid-state batteries.

[1]  Moon Jeong Park,et al.  Highly Conductive Solid-State Hybrid Electrolytes Operating at Subzero Temperatures. , 2017, ACS applied materials & interfaces.

[2]  Jian-jun Zhang,et al.  A Superior Polymer Electrolyte with Rigid Cyclic Carbonate Backbone for Rechargeable Lithium Ion Batteries. , 2017, ACS applied materials & interfaces.

[3]  Sen Xin,et al.  A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. , 2017, Angewandte Chemie.

[4]  T. Lodge,et al.  Robust Polymer Electrolyte Membranes with High Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation. , 2017, ACS applied materials & interfaces.

[5]  Ping He,et al.  Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries , 2017 .

[6]  Thomas F. Miller,et al.  Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries. , 2017, Accounts of chemical research.

[7]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[8]  W. N. S. Sajiri,et al.  Biodegradable poly (ε-caprolactone)/lithium bis(trifluoromethanesulfonyl) imide as gel polymer electrolyte , 2017, Ionics.

[9]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[10]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society Reviews.

[11]  C. Doh,et al.  Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature , 2016 .

[12]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[13]  X. Sun,et al.  Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors , 2016 .

[14]  Jun Ma,et al.  All solid-state polymer electrolytes for high-performance lithium ion batteries , 2016 .

[15]  Jinli Zhang,et al.  A Cross-Linking Succinonitrile-Based Composite Polymer Electrolyte with Uniformly Dispersed Vinyl-Functionalized SiO2 Particles for Li-Ion Batteries. , 2016, ACS applied materials & interfaces.

[16]  G. Cui,et al.  Recent Advances in Non‐Aqueous Electrolyte for Rechargeable Li–O2 Batteries , 2016 .

[17]  Qiang Xu,et al.  A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery , 2016 .

[18]  M. Xiao,et al.  Polymer electrolytes for lithium polymer batteries , 2016 .

[19]  J. Chai,et al.  Progress in nitrile-based polymer electrolytes for high performance lithium batteries , 2016 .

[20]  Zhongyi Zhang,et al.  Preparation and characterization of biodegradable poly(ε-caprolactone)-based gel polymer electrolyte films , 2016, Ionics.

[21]  N. Imanishi,et al.  Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes , 2016 .

[22]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[23]  S. Hirano,et al.  Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries , 2016 .

[24]  Li Li,et al.  An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries , 2016 .

[25]  B. Scrosati,et al.  Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. , 2016, Angewandte Chemie.

[26]  Jian-jun Zhang,et al.  A sustainable and rigid-flexible coupling cellulose-supported poly (propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries , 2016 .

[27]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[28]  Daniel Brandell,et al.  High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature , 2015 .

[29]  Xinhong Zhou,et al.  Safety‐Reinforced Poly(Propylene Carbonate)‐Based All‐Solid‐State Polymer Electrolyte for Ambient‐Temperature Solid Polymer Lithium Batteries , 2015 .

[30]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .

[31]  Ming Liu,et al.  In Situ Synthesis of a Hierarchical All‐Solid‐State Electrolyte Based on Nitrile Materials for High‐Performance Lithium‐Ion Batteries , 2015 .

[32]  Stefano Passerini,et al.  Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. , 2015, ChemSusChem.

[33]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[34]  Bing Sun,et al.  Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries , 2015 .

[35]  Nicola Boaretto,et al.  Polymers: Opening Doors to Future Batteries , 2015 .

[36]  M. Shokrgozar,et al.  Modification of PCL Electrospun Nanofibrous Mat With Calendula officinalis Extract for Improved Interaction With Cells , 2015 .

[37]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[38]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[39]  Kenta Yamazaki,et al.  Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. , 2014, Chemical communications.

[40]  Bo Zhang,et al.  Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery , 2014, Scientific Reports.

[41]  Hyun‐Kon Song,et al.  Succinonitrile as a corrosion inhibitor of copper current collectors for overdischarge protection of lithium ion batteries. , 2014, ACS applied materials & interfaces.

[42]  Li-zhen Fan,et al.  Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries , 2013 .

[43]  J. Pringle Recent progress in the development and use of organic ionic plastic crystal electrolytes. , 2013, Physical chemistry chemical physics : PCCP.

[44]  T. Kyu,et al.  Ionic Conductivity in Relation to Ternary Phase Diagram of Poly(ethylene oxide), Succinonitrile, and Lithium Bis(trifluoromethane)sulfonimide Blends , 2012 .

[45]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[46]  I-Der Wu,et al.  Investigating the effect of interaction behavior on the ionic conductivity of Polyester/LiClO4 blend systems , 2011 .

[47]  S. Ramesh,et al.  An investigation on PAN–PVC–LiTFSI based polymer electrolytes system , 2011 .

[48]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[49]  Bruno Scrosati,et al.  A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning , 2011 .

[50]  Shi-Gang Sun,et al.  An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn2O4 , 2010 .

[51]  A. J. Bhattacharyya,et al.  Increasing ionic conductivity and mechanical strength of a plastic electrolyte by inclusion of a polymer , 2008 .

[52]  Cheng‐Chien Wang,et al.  Synthesis and characterization of a new network polymer electrolyte containing polyether in the main chains and side chains , 2008 .

[53]  A. J. Bhattacharyya,et al.  Succinonitrile as a Versatile Additive for Polymer Electrolytes , 2007 .

[54]  W. Bennett,et al.  Composite electrolytes for lithium batteries : Ionic liquids in APTES cross-linked polymers , 2007 .

[55]  Derval dos Santos Rosa,et al.  Development of a biodegradable polymer electrolyte for rechargeable batteries , 2006 .

[56]  Yo Kobayashi,et al.  Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement , 2005 .

[57]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[58]  Michel Armand,et al.  The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors , 2004, Nature materials.

[59]  S. Passerini,et al.  Investigation on the Stability of the Lithium‐Polymer Electrolyte Interface , 2000 .

[60]  Toshiyuki Watanabe,et al.  High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains , 1999 .

[61]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[62]  M. H. Othman Polymer Blends and Composites From Renewable Resources , 2020, Encyclopedia of Renewable and Sustainable Materials.

[63]  Z. Lon Recent developments in thio-LISICON solid electrolytes , 2015 .

[64]  J. Dahn,et al.  Effects of Succinonitrile (SN) as an Electrolyte Additive on the Impedance of LiCoO2/Graphite Pouch Cells during Cycling , 2014 .

[65]  Keun-Ho Choi,et al.  Thin, Deformable, and Safety‐Reinforced Plastic Crystal Polymer Electrolytes for High‐Performance Flexible Lithium‐Ion Batteries , 2014 .

[66]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[67]  D. Hutmacher,et al.  return of a forgotten polymer — Polycaprolactone n the 21 st century aria , 2010 .