Boundary driven unconventional mechanism of macroscopic magnetic field generation in beam-plasma interaction

[1]  Atul Kumar,et al.  Energy principle for excitations in plasmas with counterstreaming electron flows , 2018 .

[2]  G. Kumar,et al.  Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios , 2017, Nature Communications.

[3]  P. Kaw Nonlinear laser–plasma interactions , 2017 .

[4]  Kartik Patel,et al.  Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain , 2016, 1605.09151.

[5]  A. Arefiev,et al.  Enhanced Multi-MeV Photon Emission by a Laser-Driven Electron Beam in a Self-Generated Magnetic Field. , 2016, Physical Review Letters.

[6]  R. Betti,et al.  Inertial-confinement fusion with lasers , 2016, Nature Physics.

[7]  L. Gremillet,et al.  Weibel instability-mediated collisionless shocks in laser-irradiated dense plasmas:Prevailing role of the electrons in the turbulence generation , 2015, 1502.00816.

[8]  G. Kumar,et al.  High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions. , 2013, The Review of scientific instruments.

[9]  E. Alves,et al.  dc-Magnetic-field generation in unmagnetized shear flows. , 2012, Physical review letters.

[10]  Z. Sheng,et al.  Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas , 2012, Proceedings of the National Academy of Sciences.

[11]  H. Liebl Applied Charged Particle Optics , 2007 .

[12]  P. Mininni,et al.  Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation , 2007 .

[13]  J. Adam,et al.  Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas. , 2006, Physical review letters.

[14]  John P. Clyne,et al.  A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations , 2005, IS&T/SPIE Electronic Imaging.

[15]  G. Kumar,et al.  Laser-generated ultrashort multimegagauss magnetic pulses in plasmas. , 2002, Physical review letters.

[16]  K Mima,et al.  Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Amita Das,et al.  Nonlocal sausage-like instability of current channels in electron magnetohydrodynamics , 2001 .

[18]  Hideaki Takabe,et al.  Modeling astrophysical phenomena in the laboratory with intense lasers , 1999 .

[19]  Michael D. Perry,et al.  Experimental Measurements of Hot Electrons Generated by Ultraintense ( > 10 19 W / cm 2 ) Laser-Plasma Interactions on Solid-Density Targets , 1998 .

[20]  Dan Botez,et al.  High‐power, diffraction‐limited‐beam operation from phase‐locked diode‐laser arrays of closely spaced ‘‘leaky’’ waveguides (antiguides) , 1988 .

[21]  M Miyagi,et al.  Bending losses in hollow and dielectric tube leaky waveguides. , 1981, Applied optics.

[22]  K. Brueckner,et al.  Laser Driven Fusion , 1973 .

[23]  Edward A. Stern,et al.  Surface Plasma Oscillations of a Degenerate Electron Gas , 1959 .

[24]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[25]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[26]  Maurizio Lontano,et al.  Nonlinear development of the weibel instability and magnetic field generation in collisionless plasmas , 1996 .