Assessing First-Order Emulator Inference for Physical Parameters in Nonlinear Mechanistic Models

We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

[1]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[2]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[3]  Mevin B Hooten,et al.  Models for Bounded Systems with Continuous Dynamics , 2009, Biometrics.

[4]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[5]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[6]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[7]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[8]  Zhengdong Lu,et al.  Fast neural network surrogates for very high dimensional physics-based models in computational oceanography , 2007, Neural Networks.

[9]  Stefan M. Wild,et al.  Bayesian Calibration of Computationally Expensive Models Using Optimization and Radial Basis Function Approximation , 2006 .

[10]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[11]  P. J. Stabenoa,et al.  Meteorology and oceanography of the Northern Gulf of Alaska , 2004 .

[12]  Stefan M. Wild,et al.  Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation , 2008 .

[13]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[14]  John C. Warner,et al.  Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System , 2008, J. Comput. Phys..

[15]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  Michael Goldstein,et al.  Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .

[18]  Michael A. West,et al.  A dynamic modelling strategy for Bayesian computer model emulation , 2009 .

[19]  Thomas M. Powell,et al.  Results from a three-dimensional, nested biological-physical model of the California Current System and comparisons with statistics from satellite imagery , 2006 .

[20]  Andrew C. Thomas,et al.  Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska , 2007 .

[21]  J. Rougier Efficient Emulators for Multivariate Deterministic Functions , 2008 .

[22]  Andrew M. Moore,et al.  Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska , 2009 .

[23]  M. J. Bayarri,et al.  Computer model validation with functional output , 2007, 0711.3271.

[24]  A. O'Hagan,et al.  Gaussian process emulation of dynamic computer codes , 2009 .

[25]  James E. Gentle,et al.  Matrix Algebra: Theory, Computations, and Applications in Statistics , 2007 .

[26]  Thomas M. Powell,et al.  Modeling iron limitation of primary production in the coastal Gulf of Alaska , 2009 .

[27]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[28]  M. Hooten,et al.  On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. , 2011, Ecology.

[29]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[30]  Dorin Drignei Fast Statistical Surrogates for Dynamical 3D Computer Models of Brain Tumors , 2008 .

[31]  Jeremy E. Oakley,et al.  Bayesian Analysis of Computer Model Outputs , 2002 .

[32]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[33]  António M. Baptista,et al.  Author's Personal Copy Dynamics of Atmospheres and Oceans Fast Data Assimilation Using a Nonlinear Kalman Filter and a Model Surrogate: an Application to the Columbia River Estuary , 2022 .