Metamodelling with independent and dependent inputs

a b s t r a c t In the cases of computationally expensive models the metamodelling technique which maps inputs and outputs is a very useful and practical way of making computations tractable. A number of new techniques which improve the efficiency of the Random Sampling-High dimensional model representation (RS-HDMR) for models with independent and dependent input variables are presented. Two different metamodelling methods for models with dependent input variables are compared. Both techniques are based on a Quasi Monte Carlo variant of RS-HDMR. The first technique makes use of transformation of the dependent input vector into a Gaussian independent random vector and then applies the decomposition of the model using a tensored Hermite polynomial basis. The second approach uses a direct decomposition of the model function into a basis which consists of the marginal distributions of input components and their joint distribution. For both methods the copula formalism is used. Numerical tests prove that the developed methods are robust and efficient.

[1]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[2]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[3]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[4]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[5]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[6]  Miguel Munoz Zuniga Méthodes stochastiques pour l'estimation contrôlée de faibles probabilités sur des modèles physiques complexes : application au domaine nucléaire , 2011 .

[7]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[8]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[9]  Nilay Shah,et al.  Comparison of Monte Carlo and Quasi Monte Carlo Sampling Methods in High Dimensional Model Representation , 2009, 2009 First International Conference on Advances in System Simulation.

[10]  R. Nelsen An Introduction to Copulas , 1998 .

[11]  Alison S. Tomlin,et al.  Global sensitivity analysis of a 3D street canyon model—Part I: The development of high dimensional model representations , 2008 .

[12]  D. Shahsavani,et al.  Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..

[13]  I. Sobol,et al.  Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .

[14]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[15]  R. Lebrun,et al.  An innovating analysis of the Nataf transformation from the copula viewpoint , 2009 .

[16]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[17]  James E. Gentle,et al.  Matrix Algebra: Theory, Computations, and Applications in Statistics , 2007 .

[18]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[19]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[20]  A. Kiureghian,et al.  Multivariate distribution models with prescribed marginals and covariances , 1986 .

[21]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[22]  I. Sobol,et al.  Global sensitivity indices for nonlinear mathematical models. Review , 2005 .

[23]  Andrea Saltelli et al. Sensitivity analysis in practice , 2013 .

[24]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice , 2002 .

[25]  H. Rabitz,et al.  Practical Approaches To Construct RS-HDMR Component Functions , 2002 .

[26]  G. Blatman,et al.  Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .

[27]  Paola Annoni,et al.  Estimation of global sensitivity indices for models with dependent variables , 2012, Comput. Phys. Commun..

[28]  Stefano Tarantola,et al.  Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..

[29]  H. Rabitz,et al.  Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. , 2006, The journal of physical chemistry. A.

[30]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[31]  I. Sobol Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .

[32]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[33]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[34]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[35]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[36]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[37]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[38]  A. Saltelli,et al.  Sensitivity analysis for chemical models. , 2005, Chemical reviews.

[39]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[40]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.