Sequentially Refined Latin Hypercube Designs: Reusing Every Point
暂无分享,去创建一个
[1] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[2] Charles Tong,et al. Refinement strategies for stratified sampling methods , 2006, Reliab. Eng. Syst. Saf..
[3] T. J. Mitchell,et al. Exploratory designs for computational experiments , 1995 .
[4] V. R. Joseph,et al. ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS , 2008 .
[5] Jason L. Loeppky,et al. Projection array based designs for computer experiments , 2012 .
[6] T. J. Mitchell,et al. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .
[7] G. G. Wang,et al. Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .
[8] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[9] E. Lehmann. Some Concepts of Dependence , 1966 .
[10] Tito Homem-de-Mello,et al. Some Large Deviations Results for Latin Hypercube Sampling , 2005, Proceedings of the Winter Simulation Conference, 2005..
[11] Jason L. Loeppky,et al. Batch sequential designs for computer experiments , 2010 .
[12] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[13] G. Rennen,et al. Nested maximin Latin hypercube designs , 2009 .
[14] Robert W. Mee,et al. Semifolding 2 k–P Designs , 2000, Technometrics.
[15] A. Owen. Controlling correlations in latin hypercube samples , 1994 .
[16] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[17] J. S. Hunter,et al. The 2 k—p Fractional Factorial Designs Part I , 2000, Technometrics.
[18] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[19] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .
[20] Ronald L. Iman. Latin Hypercube Sampling , 2008 .
[21] J. S. Hunter,et al. The 2 k — p Fractional Factorial Designs , 1961 .
[22] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[23] Jon C. Helton,et al. Extension of Latin hypercube samples with correlated variables , 2008, Reliab. Eng. Syst. Saf..
[24] David Mease,et al. Latin Hyperrectangle Sampling for Computer Experiments , 2006, Technometrics.
[25] Peter Z. G. Qian,et al. Nested orthogonal array-based Latin hypercube designs , 2011 .
[26] Peter Z. G. Qian. Nested Latin hypercube designs , 2009 .