Forward Feynman-Kac type representation for semilinear non-conservative partial differential equations
暂无分享,去创建一个
[1] Etienne Pardoux,et al. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations , 2014 .
[2] L. Holmström,et al. Asymptotic bounds for the expected L 1 error of a multivariate kernel density estimator , 1992 .
[3] Benjamin Jourdain,et al. Propagation of chaos and fluctuations for a moderate model with smooth initial data , 1998 .
[4] Nadia Oudjane,et al. Monte-Carlo algorithms for a forward Feynman–Kac-type representation for semilinear nonconservative partial differential equations , 2018, Monte Carlo Methods Appl..
[5] Francesco Russo,et al. Probabilistic representation of a class of non conservative nonlinear Partial Differential Equations , 2015, 1504.03882.
[6] Vladimir I. Bogachev,et al. Fokker-planck-kolmogorov Equations , 2015 .
[7] S. Peng,et al. Adapted solution of a backward stochastic differential equation , 1990 .
[8] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[9] V. Barbu,et al. Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case , 2008, 0805.2383.
[10] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .
[11] É. Pardoux. Backward Stochastic Differential Equations and Viscosity Solutions of Systems of Semilinear Parabolic and Elliptic PDEs of Second Order , 1998 .
[12] Marco Pavone,et al. Stochastic Optimal Control , 2015 .
[13] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[14] Nadia Oudjane,et al. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[15] N. Oudjane,et al. On the well-posedness of a class of McKean Feynman-Kac equations , 2018, 1810.10205.
[16] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[17] Xiaolu Tan,et al. A numerical algorithm for a class of BSDEs via branching process , 2013 .
[18] D. Talay,et al. Convergence Rate for the Approximation of the Limit Law of Weakly Interacting Particles 2: Application to the Burgers Equation , 1996 .
[19] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[20] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[21] Pierre Henry-Labordere,et al. Counterparty Risk Valuation: A Marked Branching Diffusion Approach , 2012, 1203.2369.
[22] A. Friedman. Stochastic Differential Equations and Applications , 1975 .
[23] James D. Murray. Mathematical Biology: I. An Introduction , 2007 .
[24] Mireille Bossy,et al. COMPARISON OF A STOCHASTIC PARTICLE METHOD AND A FINITE VOLUME DETERMINISTIC METHOD APPLIED TO BURGERS EQUATION , 1997, Monte Carlo Methods Appl..
[25] François Delarue,et al. An interpolated stochastic algorithm for quasi-linear PDEs , 2008, Math. Comput..
[26] H. Soner,et al. Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.
[27] A. Sznitman. Topics in propagation of chaos , 1991 .
[28] Francesco Russo,et al. Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.
[29] M. K rn,et al. Stochastic Optimal Control , 1988 .
[30] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[31] X. Y. Wang,et al. Solitary wave solutions of the generalised Burgers-Huxley equation , 1990 .
[32] Sylvie Méléard,et al. A propagation of chaos result for a system of particles with moderate interaction , 1987 .
[33] D. Aronson,et al. Multidimensional nonlinear di u-sion arising in population genetics , 1978 .
[34] Processus associés à l'équation des milieux poreux , 1996 .
[35] J. Gillis,et al. Probability and Related Topics in Physical Sciences , 1960 .
[36] Francesco Russo,et al. Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation , 2013 .
[37] Probabilistic representation for solutions of an irregular porous media type equation. , 2008 .
[38] T. El-Danaf,et al. Solitary Wave Solutions for the Generalized Burgers-Huxley Equation , 2007 .