Forward Feynman-Kac type representation for semilinear non-conservative partial differential equations

ABSTRACT We propose a non-linear forward Feynman-Kac type equation, which represents the solution of a nonconservative semilinear parabolic Partial Differential Equations (PDE). We show in particular existence and uniqueness. The solution of that type of equation can be approached via a weighted particle system.

[1]  Etienne Pardoux,et al.  Stochastic Differential Equations, Backward SDEs, Partial Differential Equations , 2014 .

[2]  L. Holmström,et al.  Asymptotic bounds for the expected L 1 error of a multivariate kernel density estimator , 1992 .

[3]  Benjamin Jourdain,et al.  Propagation of chaos and fluctuations for a moderate model with smooth initial data , 1998 .

[4]  Nadia Oudjane,et al.  Monte-Carlo algorithms for a forward Feynman–Kac-type representation for semilinear nonconservative partial differential equations , 2018, Monte Carlo Methods Appl..

[5]  Francesco Russo,et al.  Probabilistic representation of a class of non conservative nonlinear Partial Differential Equations , 2015, 1504.03882.

[6]  Vladimir I. Bogachev,et al.  Fokker-planck-kolmogorov Equations , 2015 .

[7]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[8]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[9]  V. Barbu,et al.  Probabilistic representation for solutions of an irregular porous media type equation: the degenerate case , 2008, 0805.2383.

[10]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[11]  É. Pardoux Backward Stochastic Differential Equations and Viscosity Solutions of Systems of Semilinear Parabolic and Elliptic PDEs of Second Order , 1998 .

[12]  Marco Pavone,et al.  Stochastic Optimal Control , 2015 .

[13]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[14]  Nadia Oudjane,et al.  Branching diffusion representation of semilinear PDEs and Monte Carlo approximation , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[15]  N. Oudjane,et al.  On the well-posedness of a class of McKean Feynman-Kac equations , 2018, 1810.10205.

[16]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[17]  Xiaolu Tan,et al.  A numerical algorithm for a class of BSDEs via branching process , 2013 .

[18]  D. Talay,et al.  Convergence Rate for the Approximation of the Limit Law of Weakly Interacting Particles 2: Application to the Burgers Equation , 1996 .

[19]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[20]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[21]  Pierre Henry-Labordere,et al.  Counterparty Risk Valuation: A Marked Branching Diffusion Approach , 2012, 1203.2369.

[22]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[23]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[24]  Mireille Bossy,et al.  COMPARISON OF A STOCHASTIC PARTICLE METHOD AND A FINITE VOLUME DETERMINISTIC METHOD APPLIED TO BURGERS EQUATION , 1997, Monte Carlo Methods Appl..

[25]  François Delarue,et al.  An interpolated stochastic algorithm for quasi-linear PDEs , 2008, Math. Comput..

[26]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[27]  A. Sznitman Topics in propagation of chaos , 1991 .

[28]  Francesco Russo,et al.  Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[29]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[30]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  X. Y. Wang,et al.  Solitary wave solutions of the generalised Burgers-Huxley equation , 1990 .

[32]  Sylvie Méléard,et al.  A propagation of chaos result for a system of particles with moderate interaction , 1987 .

[33]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[34]  Processus associés à l'équation des milieux poreux , 1996 .

[35]  J. Gillis,et al.  Probability and Related Topics in Physical Sciences , 1960 .

[36]  Francesco Russo,et al.  Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation , 2013 .

[37]  Probabilistic representation for solutions of an irregular porous media type equation. , 2008 .

[38]  T. El-Danaf,et al.  Solitary Wave Solutions for the Generalized Burgers-Huxley Equation , 2007 .