What do we know about three-periodic nets?

Abstract An account is given of various classifications of three-periodic nets. It is convenient to classify nets according to the nature of their maximum-symmetry embeddings. Other classifications, particularly in terms of the tilings that carry the nets, are also discussed. Although there is an infinity of possible nets, for certain types the number of possibilities is limited—there are for example exactly five regular nets. An account is given of the enumerations of various types of special structures such as sphere packings, the nets of simple tilings and self-dual tilings. Some databases of relevant structures and computer programs are described.

[1]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[2]  Igor Rivin,et al.  Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Michael W. Deem,et al.  Framework crystal structure solution by simulated annealing : test application to known zeolite structures , 1992 .

[5]  Lee Brammer,et al.  New trends in crystal engineering , 2005 .

[6]  S. Batten,et al.  A new self-penetrating uniform net, (8,4) (or 8(6)), containing planar four-coordinate nodes. , 2003, Journal of the American Chemical Society.

[7]  Michel Deza,et al.  Uniform Partitions of 3-space, their Relatives and Embedding , 1999, Eur. J. Comb..

[8]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[9]  Jacek Klinowski,et al.  Systematic enumeration of crystalline networks , 1999, Nature.

[10]  W. Fischer,et al.  Homogeneous sphere packings with triclinic symmetry. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Daniel H. Huson,et al.  4-Regular Vertex-Transitive Tilings of E3 , 2000, Discret. Comput. Geom..

[12]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[13]  W. Fischer,et al.  Minimal densities of cubic sphere-packing types. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[14]  B. M. Fulk MATH , 1992 .

[15]  T. Maris,et al.  Molecular tectonics. Selective exchange of cations in porous anionic hydrogen-bonded networks built from derivatives of tetraphenylborate. , 2005, Journal of the American Chemical Society.

[16]  W. Fischer Tetragonal sphere packings: minimal densities and subunits. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[17]  W. Fischer,et al.  Sphere packings with three contacts per sphere and the problem of the least dense sphere packing , 1995 .

[18]  A. F. Wells The geometrical basis of crystal chemistry. Part 1 , 1954 .

[19]  Vladislav A. Blatov,et al.  Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database , 2004 .

[20]  J. B. Higgins,et al.  ZSM-10: Synthesis and tetrahedral framework structure , 1996 .

[21]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[22]  M. O'keeffe,et al.  Uninodal 4‐connected 3D nets. I. Nets without 3‐ or 4‐rings , 1992 .

[23]  O. Yaghi,et al.  Three-periodic nets and tilings: minimal nets. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[24]  O. Delgado-Friedrichs,et al.  Isohedral simple tilings: binodal and by tiles with , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[25]  Monte B. Boisen,et al.  Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule , 1994 .

[26]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[27]  D. Bonchev,et al.  Chemical topology : applications and techniques , 2000 .

[28]  Y. Oka,et al.  Knotted network consisting of 3-threads and a zwitterionic one-dimensional polymorphs of trans-3-(3-pyridyl)acrylate of cobalt and nickel, MII(C8H6NO2)2(H2O)2. , 2005, Inorganic chemistry.

[29]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[30]  V. Blatov,et al.  Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD) , 2005 .

[31]  Michael Treacy,et al.  Enumeration of periodic tetrahedral frameworks , 1997 .

[33]  Stephen T. Hyde,et al.  Meditation on an engraving of Fricke and Klein (the modular group and geometrical chemistry) , 2003 .

[34]  Marjorie Senechal,et al.  Which Tetrahedra Fill Space , 1981 .

[35]  Michael O'Keeffe,et al.  The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation , 2003 .

[36]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: semiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[37]  V. Blatov Voronoi–dirichlet polyhedra in crystal chemistry: theory and applications , 2004 .

[38]  Michael O'Keeffe,et al.  Identification of and symmetry computation for crystal nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[39]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[40]  M. O'Keeffe,et al.  Dense and rare four-connected nets , 1991 .

[41]  A. F. Wells Three-dimensional nets and polyhedra , 1977 .

[42]  Jin Yang,et al.  A porous supramolecular architecture from a copper(II) coordination polymer with a 3D four-connected 8(6) net. , 2003, Inorganic chemistry.

[43]  M. Kanatzidis,et al.  Design of Solids from Molecular Building Blocks: Golden Opportunities for Solid State Chemistry , 2000 .

[44]  R. Orlando,et al.  Experimental and theoretical study of weak interactions in simple molecular solids , 2005 .

[45]  Daniel H. Huson,et al.  On tilings of the plane , 1987 .

[46]  H Sowa,et al.  Exceptional properties of some sphere packings in the general position of P6(2)22. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Michael O'Keeffe,et al.  Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1 , 2000 .

[49]  E. Koch,et al.  Crystal structures. I. Patterns and symmetry , 1997 .

[50]  R. Nesper,et al.  On tilings and patterns on hyperbolic surfaces and their relation to structural chemistry. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Olaf Delgado-Friedrichs,et al.  Equilibrium Placement of Periodic Graphs and Convexity of Plane Tilings , 2005, Discret. Comput. Geom..

[52]  Xianhui Bu,et al.  Synthesis and organization of zeolite-like materials with three-dimensional helical pores , 1998, Nature.

[53]  Davide M. Proserpio,et al.  Borromean links and other non-conventional links in ‘polycatenated’ coordination polymers: re-examination of some puzzling networks , 2003 .

[54]  Stephen T. Hyde,et al.  Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers , 1988 .

[55]  Daniel H. Huson,et al.  Tiling Space by Platonic Solids, I , 1999, Discret. Comput. Geom..