Suspended DNA structural characterization by TEM diffraction

[1]  E. Fabrizio,et al.  Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow , 2017 .

[2]  E. Fabrizio,et al.  Raman on suspended DNA , 2017 .

[3]  Tania Limongi,et al.  The structure of DNA by direct imaging and related topics , 2017 .

[4]  O. Sokolova,et al.  Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. , 2017, Micron.

[5]  F. Benfenati,et al.  Imaging and structural studies of DNA-protein complexes and membrane ion channels. , 2017, Nanoscale.

[6]  M. Papi,et al.  Recent advances in superhydrophobic surfaces and their relevance to biology and medicine , 2016, Bioinspiration & biomimetics.

[7]  E. Fabrizio,et al.  Raman on suspended DNA: Novel super-hydrophobic approach for structural studies , 2016 .

[8]  Remo Proietti Zaccaria,et al.  Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain , 2015, Science Advances.

[9]  Sergei Lopatin,et al.  The structure of DNA by direct imaging , 2015, Science Advances.

[10]  Marco Lazzarino,et al.  Plasmon resonance tuning using DNA origami actuation. , 2015, Chemical communications.

[11]  Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces , 2014 .

[12]  M. S. Qureshi,et al.  A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays , 2013 .

[13]  S. Dante,et al.  AFM characterization of biomolecules in physiological environment by an advanced nanofabricated probe , 2012, Microscopy research and technique.

[14]  Remo Proietti Zaccaria,et al.  Direct imaging of DNA fibers: the visage of double helix. , 2012, Nano letters.

[15]  R. Egerton,et al.  Mechanisms of radiation damage in beam‐sensitive specimens, for TEM accelerating voltages between 10 and 300 kV , 2012, Microscopy research and technique.

[16]  E. Di Fabrizio,et al.  Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes , 2012, Plasmonics.

[17]  M. Dobbs Genetics in orthopaedics: Editorial comment , 2007 .

[18]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[19]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[20]  A G Leslie,et al.  Polymorphism of DNA double helices. , 1980, Journal of molecular biology.

[21]  S. Arnott Polymorphism of nucleic Acid duplexes as revealed by x-ray diffraction analysis of oriented fibers. , 1980, Biophysical journal.

[22]  Rosalind E. Franklin,et al.  The structure of sodium thymonucleate fibres. I. The influence of water content , 1953 .

[23]  R. Franklin,et al.  Molecular Configuration in Sodium Thymonucleate , 1953, Nature.

[24]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[25]  R. G. GOSlA The Structure of Sodium Thymonucleate Fibres . II . The Cylindrically Symmetrical Patterson Function , 1953 .

[26]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.