Temperature-controlled multisensory neuromorphic devices for artificial visual dynamic capture enhancement

[1]  Wenlong Xu,et al.  Stretchable Neuromorphic Transistor That Combines Multisensing and Information Processing for Epidermal Gesture Recognition. , 2022, ACS nano.

[2]  Ji-Yong Park,et al.  An Artificial Mechano‐Nociceptor with Mott Transition , 2021, Small methods.

[3]  Haochuan Wan,et al.  Multimodal Artificial Neurological Sensory-Memory System Based on Flexible Carbon Nanotube Synaptic Transistor. , 2021, ACS nano.

[4]  T. Guo,et al.  Artificial multisensory integration nervous system with haptic and iconic perception behaviors , 2021, Nano Energy.

[5]  Yuan Liu,et al.  High-Density Reconfigurable Synaptic Transistors Targeting a Minimalist Neural Network. , 2021, ACS applied materials & interfaces.

[6]  Minqiang Wang,et al.  Trioctylphosphine-Assisted Pre-protection Low-Temperature Solvothermal Synthesis of Highly Stable CsPbBr3/TiO2 Nanocomposites. , 2021, The journal of physical chemistry letters.

[7]  Yuchao Yang,et al.  Vertical‐organic‐nanocrystal‐arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing , 2021, SmartMat.

[8]  K. Loh,et al.  Intrinsic polarization coupling in 2D α‐In2Se3 toward artificial synapse with multimode operations , 2021, SmartMat.

[9]  Le Yang,et al.  An artificial sensory neuron with visual-haptic fusion , 2020, Nature Communications.

[10]  T. Guo,et al.  Nonvolatile Multilevel Photo-memory Based on Lead-Free Double Perovskite Cs2AgBiBr6 Nanocrystals Wrapped within SiO2 as Charge Trapping Layer. , 2020, ACS applied materials & interfaces.

[11]  Yuan Liu,et al.  Stretchable synaptic transistors with tunable synaptic behavior , 2020 .

[12]  Angshuman Nag,et al.  CsPbBr3/ZnS Core/Shell Type Nanocrystals for Enhancing Luminescence Lifetime and Water Stability , 2020 .

[13]  Fu Liu,et al.  Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves , 2020, Nature Communications.

[14]  T. Guo,et al.  An Electret-based Organic Synaptic Transistor for Neuromorphic Computing. , 2020, ACS applied materials & interfaces.

[15]  T. Guo,et al.  Synaptic Transistor Capable of Accelerated Learning Induced by Temperature-facilitated Modulation of Synaptic Plasticity. , 2019, ACS applied materials & interfaces.

[16]  Tailiang Guo,et al.  A multi-input light-stimulated synaptic transistor for complex neuromorphic computing , 2019, Journal of Materials Chemistry C.

[17]  D. Tang,et al.  Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr3 perovskite nanocrystals. , 2019, The Analyst.

[18]  Gunuk Wang,et al.  Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine‐Facilitated Synaptic Activity , 2018, Advanced Functional Materials.

[19]  David-Wei Zhang,et al.  A MoS2/PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility , 2018, Advanced materials.

[20]  D. Jeong,et al.  Nonvolatile Memory Materials for Neuromorphic Intelligent Machines , 2018, Advanced materials.

[21]  W. Hu,et al.  A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual‐Perception System , 2018, Advanced materials.

[22]  Qing Wan,et al.  Flexible Neuromorphic Architectures Based on Self-Supported Multiterminal Organic Transistors. , 2018, ACS applied materials & interfaces.

[23]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[24]  Liang Wang,et al.  Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High‐Performance and Safe Lithium Storage , 2017, Advanced materials.

[25]  T. Guo,et al.  High Performance Flexible Nonvolatile Memory Based on Vertical Organic Thin Film Transistor , 2017 .

[26]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[27]  Yitong Dong,et al.  Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals. , 2017, Journal of the American Chemical Society.

[28]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[29]  Nitish V. Thakor,et al.  Neuromimetic Event-Based Detection for Closed-Loop Tactile Feedback Control of Upper Limb Prostheses , 2016, IEEE Transactions on Haptics.

[30]  Kiely N. James,et al.  Mechanism for Selective Synaptic Wiring of Rod Photoreceptors into the Retinal Circuitry and Its Role in Vision , 2015, Neuron.

[31]  Younan Xia,et al.  Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. , 2015, Journal of the American Chemical Society.

[32]  Whi Dong Kim,et al.  Thin Amorphous TiO2 Shell on CdSe Nanocrystal Quantum Dots Enhances Photocatalysis of Hydrogen Evolution from Water , 2014 .

[33]  Yi Shi,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems , 2013, Nature Communications.

[34]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[35]  Fang‐Xing Xiao Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. , 2012, ACS applied materials & interfaces.

[36]  Henning Sirringhaus,et al.  Band-like temperature dependence of mobility in a solution-processed organic semiconductor. , 2010, Nature materials.

[37]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[38]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[39]  Zhiming Lin,et al.  Sonochemical synthesis of nanocrystalline TiO 2 by hydrolysis of titanium alkoxides , 2003 .

[40]  Gilles Horowitz,et al.  Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors , 2000 .

[41]  C. L. Smith The temperature dependence of oxidative phosphorylation and of the activity of various enzyme systems in liver mitochondria from cold- and warm-blooded animals. , 1973, Comparative biochemistry and physiology. B, Comparative biochemistry.

[42]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[43]  T. Guo,et al.  Synaptic transistor with tunable synaptic behaviors based on thermo-denatured polar polymer material , 2022, Journal of Materials Chemistry C.

[44]  C. Tung,et al.  Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals , 2018 .

[45]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[46]  Jérôme Ruel,et al.  Transduction and encoding sensory information by skin mechanoreceptors , 2014, Pflügers Archiv - European Journal of Physiology.

[47]  M. Blumberg,et al.  Temperature-induced reciprocal activation of hippocampal field activity. , 2004, Journal of neurophysiology.

[48]  Luo Qingming EFFECTS OF TEMPERATURE ON THE ACTIVITY OF CULTURED HIPPOCAMPAL NEURONAL NETWORKS , 2004 .

[49]  R. Daniel,et al.  The effect of low temperatures on enzyme activity. , 1995, The Biochemical journal.

[50]  J. von Neumann,et al.  The Principles of Large-Scale Computing Machines , 1981, Annals of the History of Computing.