Self-similar Collapse of Rotating Magnetic Molecular Cloud Cores

We present self-similar solutions that describe the gravitational collapse of rotating, isothermal, magnetic molecular cloud cores. These solutions make it possible, for the first time, to study the formation of rotationally supported protostellar disks of the type detected around many young stellar objects in the context of a realistic scenario of star formation in magnetically supported, weakly ionized, molecular cloud cores. This work focuses on the evolution after a point mass first forms at the center and generalizes previous results by Contopoulos, Ciolek, & Königl that did not include rotation. Our semianalytic scheme incorporates ambipolar diffusion and magnetic braking and allows us to examine the full range of expected behaviors and their dependence on the physical parameters. We find that, for typical parameter values, the inflow first passes through an ambipolar diffusion shock (at a radius ra), where the magnetic flux decouples from the matter, and subsequently through a centrifugal shock (at rc), inward of which a rotationally supported disk (of mass Md) is established. By the time (~105 yr) that the central mass Mc grows to ~1 M☉, ra ≳ 103 AU, rc ≳ 102 AU, and Md/Mc ≲ 0.1. The derived disk properties are consistent with data on T Tauri systems, and our results imply that protostellar disks may well be Keplerian also during earlier phases of their evolution. We demonstrate that the disk is likely to drive centrifugal outflows that transport angular momentum and mass, and we show how the radially self-similar wind solution of Blandford & Payne can be naturally incorporated into the disk model. We further verify that gravitational torques and magnetorotational instability-induced turbulence typically do not play an important role in the angular momentum transport. For completeness, we also present solutions for the limiting cases of fast rotation (where the collapse results in a massive disk with such a large outer radius that it traps the ambipolar diffusion front) and strong braking (where no disk is formed and the collapse resembles that of a nonrotating core at small radii), as well as solutions describing the rotational collapse of ideal MHD and of nonmagnetic model cores.

[1]  A. Boss Protostellar Fragmentation Enhanced by Magnetic Fields , 2000 .

[2]  R. Nishi,et al.  Frozen Condition for the Charged Particles in Molecular Clouds , 2000 .

[3]  H. Walker,et al.  Models of the dust structures around Vega-excess stars , 2000 .

[4]  Fragmentation Instability of Molecular Clouds: Numerical Simulations , 2000, astro-ph/0002092.

[5]  K. Tomisaka The Evolution of the Angular Momentum Distribution during Star Formation , 1999, The Astrophysical journal.

[6]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[7]  T. Tsuribe Self-similar Viscous Accretion and Growth of the Central Core in Self-gravitating Disks , 1999 .

[8]  R. Winglee,et al.  Jets from Accreting Magnetic Young Stellar Objects. II. Mechanism Physics , 1999 .

[9]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[10]  Rodger I. Thompson,et al.  NICMOS Imaging of the HR 4796A Circumstellar Disk , 1999, astro-ph/9901218.

[11]  M. Wardle,et al.  The conductivity of dense molecular gas , 1998, astro-ph/9810468.

[12]  F. Nakamura,et al.  Gravitational Collapse of Isothermal Magnetized Clouds: The Universality of Self-similar Collapse , 1999 .

[13]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[14]  S. Desch,et al.  The Magnetic Decoupling Stage of Star Formation , 2001 .

[15]  Richard M. Crutcher,et al.  Magnetic Fields in Molecular Clouds: Observations Confront Theory , 1998 .

[16]  T. Mouschovias,et al.  Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores , 1998 .

[17]  S. Basu Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores , 1998, astro-ph/9808140.

[18]  K. Tomisaka Collapse-Driven Outflow in Star-Forming Molecular Cores , 1998, astro-ph/9806085.

[19]  N. Calvet,et al.  Accretion Disks around Young Objects. I. The Detailed Vertical Structure , 1998, astro-ph/9806060.

[20]  E. Zweibel Fragmentation Instability of Molecular Clouds , 1998 .

[21]  Zhi-Yun Li Self-similar Collapse of Magnetized Molecular Cloud Cores with Ambipolar Diffusion and the “Magnetic Flux Problem” in Star Formation , 1998 .

[22]  A. Königl,et al.  Dynamical Collapse of Nonrotating Magnetic Molecular Cloud Cores: Evolution through Point-Mass Formation , 1998, astro-ph/9804113.

[23]  J. Stone,et al.  Nonlinear Evolution of the Magnetorotational Instability in Ion-Neutral Disks , 1998, astro-ph/9802227.

[24]  K. Saigo,et al.  Similarity Solution for Formation of a Circumstellar Disk through the Collapse of a Flattened Rotating Cloud , 1998 .

[25]  Zhi-Yun Li Formation and Collapse of Magnetized Spherical Molecular Cloud Cores , 1998 .

[26]  A. Königl,et al.  Self-similar Collapse of Nonrotating Magnetic Molecular Cloud Cores , 1998 .

[27]  M. Tamura,et al.  Rotation in the Protostellar Envelopes around IRAS 04169+2702 and IRAS 04365+2535: The Size Scale for Dynamical Collapse , 1997 .

[28]  S. Basu A Semianalytic Model for Supercritical Core Collapse: Self-Similar Evolution and the Approach to Protostar Formation , 1997 .

[29]  D. Clemens,et al.  Rotation of starless Bok globules , 1997 .

[30]  F. Nakamura,et al.  Gravitational Contraction of Rotating Clouds: Formation of Self-similarly Collapsing Disks , 1997 .

[31]  C. McKee,et al.  Star Formation in Cold, Spherical, Magnetized Molecular Clouds , 1997, astro-ph/9703144.

[32]  S. Mineshige,et al.  Self-similar Collapse of a Self-gravitating Viscous Disk , 1997, astro-ph/9701189.

[33]  Zhi-Yun Li,et al.  Magnetic Forces in an Isopedic Disk , 1997 .

[34]  Zhi-Yun Li,et al.  Self-Similar Collapse of an Isopedic Isothermal Disk , 1997 .

[35]  J. Hawley,et al.  Instability, turbulence, and enhanced transport in accretion disks , 1997 .

[36]  Frank H. Shu,et al.  Magnetized Singular Isothermal Toroids , 1996 .

[37]  Zhi-Yun Li Magnetohydrodynamic Disk-Wind Connection: Magnetocentrifugal Winds from Ambipolar Diffusion-dominated Accretion Disks , 1996 .

[38]  Zhi-Yun Li,et al.  Hydromagnetic Accretion Shocks around Low-Mass Protostars , 1996 .

[39]  R. Popham Can FU Orionis Outbursts Regulate the Rotation Rates of T Tauri Stars , 1996, astro-ph/9603083.

[40]  K. Tomisaka Collapse and Fragmentation of Cylindrical Magnetized Clouds: Simulation with Nested Grid Scheme , 1994, astro-ph/9411040.

[41]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. III. Effect of the initial mass-to-flux ratio , 1995 .

[42]  T. Mouschovias,et al.  Ambipolar diffusion, interstellar dust, and the formation of cloud cores and protostars. IV. Effect of ultraviolet ionization and magnetically controlled infall rate , 1995 .

[43]  S. Basu,et al.  Magnetic Braking, Ambipolar Diffusion, and the Formation of Cloud Cores and Protostars. II. A Parameter Study , 1995 .

[44]  J. C. Tsai,et al.  Protostellar Collapse with a Shock , 1995 .

[45]  F. Nakamura,et al.  Fragmentation of Filamentary Molecular Clouds with Longitudinal Magnetic Fields: Formation of Disks and Their Collapse , 1995 .

[46]  J. Papaloizou,et al.  Interchange instability in and accretion disc with a poloidal magnetic field , 1995, astro-ph/9504043.

[47]  W. I. Newman,et al.  Implosive accretion and outbursts of active galactic nuclei , 1994 .

[48]  T. Chiueh,et al.  SELF-SIMILAR, SPHERICAL COLLAPSE OF A NONROTATING MAGNETIZED CLOUD , 1994 .

[49]  David A. Neufeld,et al.  Dense molecular shocks and accretion onto protostellar disks , 1994 .

[50]  R. Crutcher,et al.  STRUCTURE AND EVOLUTION OF MAGNETICALLY SUPPORTED MOLECULAR CLOUDS : EVIDENCE FOR AMBIPOLAR DIFFUSION IN THE BARNARD 1 CLOUD , 1994 .

[51]  T. Mouschovias,et al.  Ambipolar Diffusion, Interstellar Dust, and the Formation of Cloud Cores and Protostars. III. Typical Axisymmetric Solutions , 1994 .

[52]  O. Blaes,et al.  LOCAL SHEAR INSTABILITIES IN WEAKLY IONIZED, WEAKLY MAGNETIZED DISKS , 1994 .

[53]  T. Mouschovias,et al.  Ambipolar Diffusion, Interstellar Dust, and the Formation of Cloud Cores and Protostars. I. Basic Physics and Formulation of the Problem , 1993 .

[54]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[55]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[56]  T. Mouschovias,et al.  Ambipolar diffusion and star formation : formation and contraction of axisymmetric cloud cores. II: Results , 1993 .

[57]  D. Clemens,et al.  Magnetic Fields in Massive Cloud Cores: Comparison of MILLIPOL and IRAS Results , 1993 .

[58]  P. Bodenheimer,et al.  The formation of protostellar disks. I - 1 M(solar) , 1993 .

[59]  M. Wardle,et al.  The Structure of Protostellar Accretion Disks and the Origin of Bipolar Flows , 1993 .

[60]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[61]  Alyssa A. Goodman,et al.  OH Zeeman observations of dark clouds , 1993 .

[62]  B. Draine,et al.  Theory of Interstellar Shocks , 1993 .

[63]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. I. Axisymmetric solutions , 1994 .

[64]  P. Foster,et al.  Gravitational collapse of an isothermal sphere , 1992 .

[65]  T. Mouschovias,et al.  Ambipolar diffusion and star formation: Formation and contraction of axisymmetric cloud cores. I. Formulation of the problem and method of solution , 1992 .

[66]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[67]  R. Nishi,et al.  Magnetic flux loss from interstellar clouds with various grain-size distributions , 1991 .

[68]  D. Lin,et al.  The formation and initial evolution of protostellar disks , 1990 .

[69]  P. Goldsmith,et al.  Polarization of the lambda = 1.3 Millimeter Continuum Radiation from the Kleinmann-Low Nebula , 1990 .

[70]  S. Stahler Deuterium and the stellar birthline , 1988 .

[71]  A. Königl Magnetic braking in weakly ionized media , 1987 .

[72]  H. Spruit,et al.  On magnetic braking of late-type stars , 1987 .

[73]  J. E. Pringle,et al.  A viscosity prescription for a self-gravitating accretion disc⋆ , 1987 .

[74]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[75]  G. Morfill,et al.  Physical processes in interstellar clouds , 1987 .

[76]  T. Mouschovias Star formation in magnetic interstellar clouds. I - Interplay between theory and observations. II - Basic theory , 1987 .

[77]  A. Dalgarno Chemical Processes in the Interstellar Gas , 1987 .

[78]  T. Mouschovias,et al.  The effect of ambipolar diffusion on magnetic braking of molecular cloud cores: an exact, time-dependent solution , 1986 .

[79]  T. Nakano,et al.  Dissipation of magnetic fields in very dense interstellar clouds – II. Final phases of star formation and the magnetic flux of a newborn star , 1986 .

[80]  T. Nakano,et al.  Dissipation of magnetic fields in very dense interstellar clouds – I. Formulation and conditions for efficient dissipation , 1986 .

[81]  A. Whitworth,et al.  Self-similar condensation of spherically symmetric self-gravitating isothermal gas clouds , 1985 .

[82]  S. Miyama,et al.  Characteristics of Collapse of Rotating Isothermal Clouds , 1984 .

[83]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[84]  Giles A Novak,et al.  Detection of submillimeter polarization in the Orion nebula , 1984 .

[85]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[86]  A. Boss,et al.  Collapse of accreting, rotating, isothermal, interstellar clouds , 1982 .

[87]  P. Cassen,et al.  Models of the formation of the solar nebula , 1982 .

[88]  B. Draine Interstellar shock waves with magnetic precursors , 1980 .

[89]  M. L. Norman,et al.  A new calculation on rotating protostar collapse , 1980 .

[90]  B. Elmegreen Magnetic diffusion and ionization fractions in dense molecular clouds - The role of charged grains , 1979 .

[91]  C. Hunter The collapse of unstable isothermal spheres. , 1977 .

[92]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[93]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[94]  W. D. Watson Interstellar molecule reactions , 1976 .

[95]  D. Mullan The Structure of Transverse Hydromagnetic Shocks in Regions of Low Ionization , 1971 .

[96]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[97]  M. Penston Dynamics of Self-Gravitating Gaseous Spheres—III: Analytical Results in the Free-fall of Isothermal Cases , 1969 .

[98]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[99]  T. P. Mitchell,et al.  EVOLUTION OF THE SOLAR MAGNETIC FIELD , 1965 .

[100]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[101]  J. Gaustad THE OPACITY OF DIFFUSE COSMIC MATTER AND THE EARLY STAGES OF STAR FORMATION , 1963 .