Numerical and sensitivity computations of three-dimensional flow and heat transfer of nanoliquid over a wedge using modified Buongiorno model

[1]  Ramesh B. Kudenatti,et al.  Computational and asymptotic methods for three-dimensional boundary-layer flow and heat transfer over a wedge , 2020, Engineering with Computers.

[2]  B. Mahanthesh,et al.  A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids , 2019, Chinese Journal of Physics.

[3]  A. Davey,et al.  Three-dimensional flow near a two-dimensional stagnation point , 1967, Journal of Fluid Mechanics.

[4]  Lawrence F. Shampine,et al.  Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .

[5]  R. Bhargava,et al.  Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids , 2011 .

[6]  O. Bég,et al.  Lie Group Analysis of Nanofluid Slip Flow with Stefan Blowing Effect via Modified Buongiorno’s Model: Entropy Generation Analysis , 2019, Differential Equations and Dynamical Systems.

[7]  J. Mackolil,et al.  Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection: A sensitivity analysis , 2021, Applied Nanoscience.

[8]  Davood Domiri Ganji,et al.  Heat transfer of Cu-water nanofluid flow between parallel plates , 2013 .

[9]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[10]  R. Bhargava,et al.  Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study , 2012 .

[11]  P. Weidman Non-axisymmetric Homann stagnation-point flows , 2012, Journal of Fluid Mechanics.

[12]  Rahmat Ellahi,et al.  Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: Numerical simulation and sensitivity analysis of turbulent fluid flow , 2016 .

[13]  Chen Yang,et al.  Convective heat transfer of nanofluids in a concentric annulus , 2013 .

[14]  P. Rana,et al.  MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno's model , 2016 .

[15]  K. Khanafer,et al.  A critical synthesis of thermophysical characteristics of nanofluids , 2011 .

[16]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[17]  J. Mackolil,et al.  Response surface optimization of heat transfer rate in Falkner-Skan flow of ZnO − EG nanoliquid over a moving wedge: Sensitivity analysis , 2021 .

[18]  N. Shashikumar,et al.  Heat transfer optimization of hybrid nanomaterial using modified Buongiorno model: A sensitivity analysis , 2021 .

[19]  Davood Domiri Ganji,et al.  Modified Buongiorno’s model for fully developed mixed convection flow of nanofluids in a vertical annular pipe , 2014 .

[20]  S. P. Gogate,et al.  Numerical Study of Three-dimensional Boundary-layer Flow over a Wedge: Magnetic Field Analysis , 2020 .

[21]  N. M. Bujurke,et al.  Asymptotic and numerical solutions of three‐dimensional boundary‐layer flow past a moving wedge , 2018 .

[22]  A. Nakayama,et al.  Steady Finite-Amplitude Rayleigh–Bénard Convection in Nanoliquids Using a Two-Phase Model: Theoretical Answer to the Phenomenon of Enhanced Heat Transfer , 2017 .

[23]  Mixed Convection of Alumina/Water Nanofluid in Microchannels using Modified Buongiorno’s Model in Presence of Heat Source/Sink , 2016 .

[24]  Donald A. Nield,et al.  The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model , 2013 .

[25]  J. Mackolil,et al.  Heat transfer optimization and sensitivity analysis of Marangoni convection in nanoliquid with nanoparticle interfacial layer and cross-diffusion effects , 2021, International Communications in Heat and Mass Transfer.

[26]  M. Turkyilmazoglu Analytical solutions of single and multi-phase models for the condensation of nanofluid film flow and heat transfer , 2015 .

[27]  Ioan Pop,et al.  Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid , 2017, Commun. Nonlinear Sci. Numer. Simul..

[28]  P. Siddheshwar,et al.  Darcy-Bénard convection of Newtonian liquids and Newtonian nanoliquids in cylindrical enclosures and cylindrical annuli , 2019, Physics of Fluids.

[29]  A. Benim,et al.  Soret and Dufour effects on three dimensional Oldroyd-B fluid , 2018, Physica A: Statistical Mechanics and its Applications.

[30]  Puneet Rana,et al.  Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium , 2012, Comput. Math. Appl..

[31]  Davood Domiri Ganji,et al.  Magnetohydrodynamic free convection of Al2O3–water nanofluid considering Thermophoresis and Brownian motion effects , 2014 .

[32]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[33]  Yufeng Nie,et al.  Insight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo-Christov heat transfer, Coriolis force, and Arrhenius activation energy , 2021, Comput. Math. Appl..

[34]  S. Bhattacharyya,et al.  MHD flow and heat transfer at a general three-dimensional stagnation point , 1998 .

[35]  Saman Rashidi,et al.  Sensitivity Analysis of Entropy Generation in Nanofluid Flow inside a Channel by Response Surface Methodology , 2016, Entropy.