A self-stabilizing 6-approximation for the minimum connected dominating set with safe convergence in unit disk graphs

In wireless ad hoc or sensor networks, a connected dominating set (CDS) is useful as the virtual backbone because there is no fixed infrastructure or centralized management. Additionally, in such networks, transient faults and topology changes occur frequently. A self-stabilizing system tolerates any kind and any finite number of transient faults, and does not need any initialization. An ordinary self-stabilizing algorithm has no safety guarantee and requires that the network remains static while converging to a legitimate configuration. Safe converging self-stabilization is one extension of self-stabilization. The safe convergence property guarantees that the system quickly converges to a safe configuration, and then, it moves to an optimal configuration without breaking safety. In this paper, we propose a self-stabilizing fully distributed 6-approximation algorithm with safe convergence for the minimum CDS in the networks modeled by unit disk graphs.

[1]  Sukumar Ghosh,et al.  A Framework of Safe Stabilization , 2003, Self-Stabilizing Systems.

[2]  Felix C. Gärtner,et al.  Fundamentals of fault-tolerant distributed computing in asynchronous environments , 1999, CSUR.

[3]  Rajiv Gandhi,et al.  Distributed algorithms for connected domination in wireless networks , 2007, J. Parallel Distributed Comput..

[4]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[5]  Sukumar Ghosh,et al.  Stabilizing Phase-Clocks , 1995, Inf. Process. Lett..

[6]  Roger Wattenhofer,et al.  Constant-time distributed dominating set approximation , 2003, PODC '03.

[7]  Bo Gao,et al.  A new distributed approximation algorithm for constructing minimum connected dominating set in wireless ad hoc networks , 2005, Int. J. Commun. Syst..

[8]  Lata Narayanan,et al.  A new local algorithm for backbone formation in ad hoc networks , 2009, PE-WASUN '09.

[9]  Nadjib Badache,et al.  A Self-Stabilizing Leader Election Algorithm in Highly Dynamic Ad Hoc Mobile Networks , 2008, IEEE Transactions on Parallel and Distributed Systems.

[10]  Colette Johnen,et al.  Robust Self-stabilizing Construction of Bounded Size Weight-Based Clusters , 2010, Euro-Par.

[11]  Jie Wu,et al.  Forward-node-set-based broadcast in clustered mobile ad hoc networks , 2003, Wirel. Commun. Mob. Comput..

[12]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[13]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[14]  Claude Berge,et al.  The theory of graphs and its applications , 1962 .

[15]  Arobinda Gupta,et al.  A Distributed Self-Stabilizing Algorithm for Finding a Connected Dominating Set in a Graph , 2005, Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT'05).

[16]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[17]  Hirotsugu Kakugawa,et al.  A Timestamp Based Transformation of Self-Stabilizing Programs for Distributed Computing Environments , 1996, WDAG.

[18]  Yuhang Yang,et al.  A new distributed approximation algorithm for constructing minimum connected dominating set in wireless ad hoc networks: Research Articles , 2005 .

[19]  Sayaka Kamei,et al.  A Self-Stabilizing Distributed Approximation Algorithm for the Minimum Connected Dominating Set , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[20]  Masaaki Mizuno,et al.  A Transformation of Self-Stabilizing Serial Model Programs for Asynchronous Parallel Computing Environments , 1998, Inf. Process. Lett..

[21]  Hirotsugu Kakugawa,et al.  A self-stabilizing minimal dominating set algorithm with safe convergence , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[22]  Shlomi Dolev,et al.  SuperStabilizing protocols for dynamic distributed systems , 1995, PODC '95.

[23]  Roy Friedman,et al.  Self-stabilizing Wireless Connected Overlays , 2006, OPODIS.

[24]  Pradip K. Srimani,et al.  Self-stabilizing Algorithms for Minimal Dominating Sets and Maximal Independent Sets , 2003 .

[25]  Tetz C. Huang,et al.  A self-stabilizing algorithm for the shortest path problem assuming the distributed demon , 2005 .

[26]  Amos Israeli,et al.  Uniform Dynamic Self-Stabilizing Leader Election , 1997, IEEE Trans. Parallel Distributed Syst..

[27]  Claude Berge Theory of graphs and its applications , 1962 .

[28]  Mohamed G. Gouda,et al.  Stabilization of General Loop-Free Routing , 2002, J. Parallel Distributed Comput..

[29]  Xiuzhen Cheng,et al.  Connected Dominating Set in Sensor Networks and MANETs , 2004 .

[30]  Jie Wu,et al.  An extended localized algorithm for connected dominating set formation in ad hoc wireless networks , 2004, IEEE Transactions on Parallel and Distributed Systems.

[31]  Sayaka Kamei,et al.  A Self-Stabilizing Distributed Approximation Algorithm for the Minimum Connected Dominating Set , 2010, Int. J. Found. Comput. Sci..

[32]  Ding-Zhu Du,et al.  Virtual Backbone-Based Routing in Multihop Ad Hoc Wireless Networks , 2002 .

[33]  Mohamed G. Gouda,et al.  Stabilizing Communication Protocols , 1991, IEEE Trans. Computers.

[34]  Shing-Tsaan Huang,et al.  Distributed execution model for self-stabilizing systems , 1994, 14th International Conference on Distributed Computing Systems.

[35]  Volker Turau,et al.  Randomized Self-stabilizing Algorithms for Wireless Sensor Networks , 2006, IWSOS/EuroNGI.

[36]  Jorge Urrutia,et al.  Local Algorithms for Dominating and Connected Dominating Sets of Unit Disk Graphs with Location Aware Nodes , 2008, LATIN.

[37]  Sébastien Tixeuil,et al.  Route Preserving Stabilization , 2003, Self-Stabilizing Systems.

[38]  Ted Herman Models of Self-Stabilization and Sensor Networks , 2003, IWDC.

[39]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[40]  Majid Sarrafzadeh,et al.  Theoretical Bound and Practical Analysis of Connected Dominating Set in Ad Hoc and Sensor Networks , 2008, DISC.

[41]  Anish Arora,et al.  Distributed Reset , 1994, IEEE Trans. Computers.

[42]  Roger Wattenhofer,et al.  Constant Time Distributed Dominating Set Approximation , 2022 .

[43]  Ding-Zhu Du,et al.  On greedy construction of connected dominating sets in wireless networks , 2005, Wirel. Commun. Mob. Comput..

[44]  Peng-Jun Wan,et al.  Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[45]  Colette Johnen,et al.  Robust self-stabilizing weight-based clustering algorithm , 2009, Theor. Comput. Sci..