Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties

The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na+-spiking behavior as well as key dendritic active properties, including Ca2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.

[1]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Idan Segev,et al.  Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[4]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[5]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[6]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[7]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[8]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[9]  W Rall,et al.  Changes of action potential shape and velocity for changing core conductor geometry. , 1974, Biophysical journal.

[10]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[11]  A. Alonso,et al.  Biophysical Properties and Slow Voltage-Dependent Inactivation of a Sustained Sodium Current in Entorhinal Cortex Layer-II Principal Neurons , 1999, The Journal of general physiology.

[12]  Erik De Schutter,et al.  Automated neuron model optimization techniques: a review , 2008, Biological Cybernetics.

[13]  W. N. Ross,et al.  Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma , 2010, Nature Neuroscience.

[14]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[15]  Kalyanmoy Deb,et al.  Light beam search based multi-objective optimization using evolutionary algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  Andreas T. Schaefer,et al.  Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. , 2003, Journal of neurophysiology.

[17]  R. Tsien,et al.  Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels , 1997, Neuropharmacology.

[18]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[19]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[20]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[21]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[22]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[23]  Idan Segev,et al.  Interregional synaptic competition in neurons with multiple STDP-inducing signals. , 2011, Journal of neurophysiology.

[24]  N. Keren,et al.  Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones , 2009, The Journal of physiology.

[25]  D. A. Brown,et al.  M‐currents and other potassium currents in bullfrog sympathetic neurones , 1982, The Journal of physiology.

[26]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[27]  Bartlett W. Mel,et al.  Binocular disparity tuning in cortical '“complex”' cells: yet another role for intradendritic computation? , 1998 .

[28]  D. Johnston,et al.  Multiple Channel Types Contribute to the Low-Voltage-Activated Calcium Current in Hippocampal CA3 Pyramidal Neurons , 1996, The Journal of Neuroscience.

[29]  J. Ruppersberg,et al.  Characterization of a Shaw‐related potassium channel family in rat brain. , 1992, The EMBO journal.

[30]  Jozsef Csicsvari,et al.  Activity-Dependent Control of Neuronal Output by Local and Global Dendritic Spike Attenuation , 2009, Neuron.

[31]  Noam Peled,et al.  Constraining compartmental models using multiple voltage recordings and genetic algorithms. , 2005, Journal of neurophysiology.

[32]  Bartlett W. Mel,et al.  Encoding and Decoding Bursts by NMDA Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[33]  A. Friedman,et al.  Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[35]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[36]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[37]  Boris S. Gutkin,et al.  The Role of Ongoing Dendritic Oscillations in Single-Neuron Dynamics , 2009, PLoS Comput. Biol..

[38]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[39]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[40]  Eve Marder,et al.  Functional consequences of animal-to-animal variation in circuit parameters , 2009, Nature Neuroscience.

[41]  W Rall,et al.  Estimating the electrotonic structure of neurons with compartmental models. , 1992, Journal of neurophysiology.

[42]  Matthew E. Larkum,et al.  Enhanced dendritic activity in awake rats , 2009, Proceedings of the National Academy of Sciences.

[43]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[44]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[45]  T. Sejnowski,et al.  The Monetary Transmission Mechanism in the United Kingdom: Pass-Through and Policy Rules. manuscript , 1996 .

[46]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[47]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[48]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[49]  B. Connors,et al.  Regenerative activity in apical dendrites of pyramidal cells in neocortex. , 1993, Cerebral cortex.

[50]  S. Siegelbaum,et al.  HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons , 2007, Neuron.

[51]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[52]  M. Brecht,et al.  Behavioural report of single neuron stimulation in somatosensory cortex , 2008, Nature.

[53]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[55]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[56]  C. Colbert,et al.  Ion channel properties underlying axonal action potential initiation in pyramidal neurons , 2002, Nature Neuroscience.

[57]  Nelson Spruston,et al.  A state-mutating genetic algorithm to design ion-channel models , 2009, Proceedings of the National Academy of Sciences.

[58]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[59]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[60]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[61]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[62]  Walter Senn,et al.  Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. , 2003, Journal of neurophysiology.

[63]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[64]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[65]  B. Sakmann,et al.  Voltage‐gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients , 2000, The Journal of physiology.

[66]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[67]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[68]  Gongyu Y. Shen,et al.  Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. , 1999, Journal of neurophysiology.

[69]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[70]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[71]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[72]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[73]  N. Marrion,et al.  Small-Conductance, Calcium-Activated Potassium Channels from Mammalian Brain , 1996, Science.

[74]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[75]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[76]  H. Markram,et al.  Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. , 2007, Cerebral cortex.

[77]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[78]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[79]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[80]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[81]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[82]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.