Hydrogen elimination during the glow‐discharge deposition of a‐Si:H alloys

A model of the deposition of a‐Si:H films by silane glow discharge is presented. Three steps are involved: SiH2 addition, H2 elimination, and cross linking. The model is based upon SiH2 gas‐phase chemistry and explains the dependence of hydrogen content of a‐Si:H upon substrate temperature.

[1]  M. Sefcík,et al.  Relative insertion rates of silylene and evidence for silylsilylene insertion into silicon-hydrogen and silicon-silicon bonds , 1973 .

[2]  G. Müller,et al.  The influence of preparation conditions on the hydrogen content of amorphous glow‐discharge silicon , 1979 .

[3]  G. Lucovsky,et al.  Defects in plasma-deposited a-Si: H , 1979 .

[4]  I. Davidson Some aspects of silicon radical chemistry , 1971 .

[5]  K. Zellama,et al.  Exodiffusion of hydrogen in amorphous silicon , 1980 .

[6]  J. Ziegler,et al.  Quantitative analysis of hydrogen in glow discharge amorphous silicon , 1977 .

[7]  P. Kirby,et al.  Glow discharge preparation of amorphous hydrogenated silicon from higher silanes , 1980 .

[8]  D. Adler Density of States in the Gap of Tetrahedrally Bonded Amorphous Semiconductors , 1978 .

[9]  G. Lucovsky,et al.  Structural interpretation of the vibrational spectra of a-Si: H alloys , 1979 .

[10]  J. Knights,et al.  Growth morphology and defects in plasma-deposited a-Si:H films , 1980 .

[11]  E. M. Peterson,et al.  Kinetics of decomposition of amorphous hydrogenated silicon films , 1979 .

[12]  F. W. Lampe,et al.  The 147-nm photolysis of monosilane , 1979 .

[13]  J. Pankove Photoluminescence recovery in rehydrogenated amorphous silicon , 1978 .

[14]  H. Okamoto,et al.  Device physics and design of a-Si ITO/p-i-n heteroface solar cells , 1980 .

[15]  D. C. Booth,et al.  Retarding crystallization of CVD amorphous silicon by alloying , 1980 .

[16]  F. W. Lampe,et al.  147-nm photolysis of disilane , 1980 .