On Computing the Number of Latin Rectangles

Doyle (circa 1980) found a formula for the number of $$k \times n$$k×n Latin rectangles $$L_{k,n}$$Lk,n. This formula remained dormant until it was recently used for counting $$k \times n$$k×n Latin rectangles, where $$k \in \{4,5,6\}$$k∈{4,5,6}. We give a formal proof of Doyle’s formula for arbitrary k. We also improve a previous implementation of this formula, which we use to find $$L_{k,n}$$Lk,n when $$k=4$$k=4 and $$n \le 150$$n≤150, when $$k=5$$k=5 and $$n \le 40$$n≤40 and when $$k=6$$k=6 and $$n \le 15$$n≤15. Motivated by computational data for $$3 \le k \le 6$$3≤k≤6, some research problems and conjectures about the divisors of $$L_{k,n}$$Lk,n are presented.

[1]  John Riordan A Recurrence Relation for Three-Line Latin Rectangles , 1952 .

[2]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[3]  Douglas S. Stones ON THE NUMBER OF LATIN RECTANGLES , 2010, Bulletin of the Australian Mathematical Society.

[4]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[5]  Arthur A. Drisko Proof of the Alon-Tarsi Conjecture for n=2rp , 1998, Electron. J. Comb..

[6]  I. Gessel Counting three-line Latin rectangles , 1986 .

[7]  Ian M. Wanless,et al.  A Congruence Connecting Latin Rectangles and Partial Orthomorphisms , 2012 .

[8]  Brendan D. McKay,et al.  Asymptotic enumeration of Latin rectangles , 1984 .

[9]  P. Doyle The number of Latin rectangles , 2007, math/0703896.

[10]  Ian M. Wanless,et al.  Divisors of the number of Latin rectangles , 2010, J. Comb. Theory A.

[11]  Paul Erdös,et al.  The Asymptotic Number of Latin Rectangles , 1946 .

[12]  Doron Zeilberger,et al.  Sister Celine's technique and its generalizations , 1982 .

[13]  C. R. Pranesachar,et al.  Enumeration of Latin rectangles via SDR’s , 1981 .

[14]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[15]  J. Q. Longyear,et al.  Counting $3$ by $n$ Latin rectangles , 1976 .

[16]  Douglas S. Stones The Many Formulae for the Number of Latin Rectangles , 2010, Electron. J. Comb..

[17]  David G. Glynn,et al.  The Conjectures of Alon--Tarsi and Rota in Dimension Prime Minus One , 2010, SIAM J. Discret. Math..

[18]  Ian M. Wanless,et al.  Compound orthomorphisms of the cyclic group , 2010, Finite Fields Their Appl..

[19]  Raúl M. Falcón Cycle structures of autotopisms of the Latin squares of order up to 11 , 2007, Ars Comb..

[20]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[21]  Ian M. Wanless,et al.  Cycle structure of autotopisms of quasigroups and latin squares , 2012, 1509.05655.

[22]  Ivar Skau,et al.  A Note on the Asymptotic Number of Latin Rectangles , 1998, Eur. J. Comb..

[23]  Ian M. Wanless,et al.  Bounds on the number of autotopisms and subsquares of a Latin square , 2013, Comb..

[24]  Jia-Yu Shao,et al.  A formula for the number of Latin squares , 1992, Discret. Math..

[25]  William O. J. Moser A generalization of Riordan's formula for 3xn latin rectangles , 1982, Discret. Math..

[26]  L. Carlitz Congruences connected with three-line latin rectangles , 1953 .

[27]  Ronald Alter How Many Latin Squares are There , 1975 .

[28]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[29]  J. Riordan Three-Line Latin Rectangles—II , 1944 .

[30]  I. Gessel Counting Latin rectangles , 1987 .

[31]  Koichiro Yamamoto,et al.  An Asymptotic Series for the Number of Three-Line Latin Rectangles , 1950 .

[32]  Douglas S. Stones Formulae for the Alon-Tarsi Conjecture , 2012, SIAM J. Discret. Math..

[33]  Ian M. Wanless,et al.  How not to prove the Alon-Tarsi conjecture , 2012, Nagoya Mathematical Journal.

[34]  S. M. Jacob The Enumeration of the Latin Rectangle of Depth Three by Means of a Formula of Reduction, with other Theorems Relating to Non‐Clashing Substitutions and Latin Squares , 2022 .

[35]  Ian M. Wanless,et al.  On the Number of Latin Squares , 2005, 0909.2101.

[36]  Navin M. Singhi,et al.  On the Number of Latin Rectangles and Chromatic Polynomial of L(Kr, s) , 1980, Eur. J. Comb..

[37]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[38]  Arthur A. Drisko On the Number of Even and Odd Latin Squares of Orderp+1 , 1997 .