Distributed algorithms for random graphs

In this article we study statistical properties of a commonly used network model - an Erd?s-Renyi random graph G ( n , p ) . We are interested in the performance of distributed algorithms on large networks, which might be represented by G ( n , p ) . We concentrate on classical problems from the field of distributed algorithms such as: finding a maximal independent set, a vertex colouring, an approximation of a minimum dominating set, a maximal matching, an edge colouring and an approximation of a maximum matching. We propose new algorithms, which with probability close to one as n ? ∞ construct anticipated structures in G ( n , p ) in a low number of rounds. Moreover, in some cases, we modify known algorithms to obtain better efficiency on G ( n , p ) .

[1]  Victor Klee,et al.  Diameters of Random Graphs , 1981, Canadian Journal of Mathematics.

[2]  Guy Louchard,et al.  A distributed algorithm to find Hamiltonian cycles in G(n, p) random graphs , 2005 .

[3]  Boris G. Pittel,et al.  On Tree Census and the Giant Component in Sparse Random Graphs , 1990, Random Struct. Algorithms.

[4]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[5]  W. Fuchs A Phragmén-Lindelöf theorem conjectured by D. J. Newman , 1981 .

[6]  Anant P. Godbole,et al.  On the Domination Number of a Random Graph , 2001, Electron. J. Comb..

[7]  C. Scheideler,et al.  Distributed coloring in O~(⎷(log n)) bit rounds , 2006, IPDPS.

[8]  Leonid Barenboim,et al.  The Locality of Distributed Symmetry Breaking , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[9]  Leonid Barenboim,et al.  Deterministic Distributed Vertex Coloring in Polylogarithmic Time , 2011, J. ACM.

[10]  Leonid Barenboim,et al.  Distributed deterministic edge coloring using bounded neighborhood independence , 2011, PODC '11.

[11]  B. Pittel,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998 .

[12]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[13]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[14]  W. Marsden I and J , 2012 .

[15]  Roger Wattenhofer,et al.  Constant-time distributed dominating set approximation , 2003, PODC '03.

[16]  R. Rajaraman,et al.  An efficient distributed algorithm for constructing small dominating sets , 2002 .

[17]  Christoph Lenzen,et al.  Minimum Dominating Set Approximation in Graphs of Bounded Arboricity , 2010, DISC.

[18]  Guy Louchard,et al.  A Distributed Algorithm to Find Hamiltonian Cycles in Random Graphs , 2004, CAAN.

[19]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[20]  Béla Bollobás,et al.  Random Graphs , 1985 .

[21]  Alessandro Panconesi,et al.  On the distributed complexity of computing maximal matchings , 1997, SODA '98.

[22]  Leonid Barenboim,et al.  Distributed Graph Coloring: Fundamentals and Recent Developments , 2013, Distributed Graph Coloring: Fundamentals and Recent Developments.

[23]  Andrew V. Goldberg,et al.  Parallel Symmetry-Breaking in Sparse Graphs , 1988, SIAM J. Discret. Math..

[24]  Roman Glebov,et al.  On the Concentration of the Domination Number of the Random Graph , 2012, SIAM J. Discret. Math..

[25]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[26]  Pu Gao,et al.  Arboricity and spanning-tree packing in random graphs with an application to load balancing , 2013, SODA.

[27]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[28]  Andrzej Czygrinow,et al.  Fast Distributed Approximation Algorithm for the Maximum Matching Problem in Bounded Arboricity Graphs , 2009, ISAAC.

[29]  Alan M. Frieze,et al.  Algorithmic theory of random graphs , 1997, Random Struct. Algorithms.

[30]  Richard Cole,et al.  Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking , 2018, Inf. Control..

[31]  Aravind Srinivasan,et al.  On the Complexity of Distributed Network Decomposition , 1996, J. Algorithms.

[32]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[33]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[34]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Alessandro Panconesi,et al.  Some simple distributed algorithms for sparse networks , 2001, Distributed Computing.

[36]  Christian Scheideler,et al.  Distributed coloring in O/spl tilde/(/spl radic/(log n)) bit rounds , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.