A discussion of wind turbine interaction and stall contributions to wind farm noise

Wind farms have recently been reported to produce a noise signature that is described as possessing a “thumping” quality. Measurements of these signatures are limited and their effects are debated but their effect on public opinion and complaints make them a concern for researchers in this field. Proposed reasons for these noise signatures include amplitude modulation, interference patterns and wake–rotor interaction. This paper discusses these effects and concludes that wake–rotor interaction plays a role by causing variations in turbulent-inflow noise and dynamic stall. The current state of research into stall noise and wind turbine wake structure is also reviewed and it is concluded that the available information and collected data on wind turbine wake are insufficient to determine how strong this role is. More information on the velocity and turbulence fields in the wake of horizontal-axis wind turbines as well as a characterisation of the noise produced by an airfoil experiencing dynamic stall is required in order to make a full assessment of rotor–wake contributions to wind farm noise.

[1]  Eja Pedersena Response to noise from modern wind farms in The Netherlands , 2009 .

[2]  Bob Thorne The Problems With “Noise Numbers” for Wind Farm Noise Assessment , 2011 .

[3]  J. Gordon Leishman,et al.  Challenges in modelling the unsteady aerodynamics of wind turbines , 2002 .

[4]  Dick Bowdler,et al.  Amplitude Modulation of Wind Turbine Noise . A Review of the Evidence , 2008 .

[5]  K. Yoshihisa Calculation of the Absorption of Sound by the Atmosphere , 1997 .

[6]  Charlotte Bay Hasager,et al.  Wake effects of large offshore wind farms identified from satellite SAR , 2005 .

[7]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[8]  Young-Ho Lee,et al.  Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model , 2013 .

[9]  Ren Renewables 2019 Global Status Report , 2012 .

[10]  A. Farboud,et al.  ‘Wind turbine syndrome’: fact or fiction? , 2013, The Journal of Laryngology & Otology.

[11]  L. Chamorro,et al.  Turbulent Flow Properties Around a Staggered Wind Farm , 2011 .

[12]  Jens Nørkær Sørensen,et al.  Simulation and modelling of of turbulence in wind farms , 2007 .

[13]  Jens Nørkær Sørensen,et al.  Numerical simulations of wake characteristics of a wind turbine in uniform inflow , 2010 .

[14]  Karl Stol,et al.  Wind Turbine Wake Modelling using Large Eddy Simulation , 2010 .

[15]  Laura A. Brooks,et al.  Prediction of noise from a wing-in-junction flow using computational fluid dynamics , 2012 .

[16]  A. Crespo,et al.  Advances in large-eddy simulation of a wind turbine wake , 2007 .

[17]  J. G. Schepers,et al.  Prediction of Wind Turbine Noise and Validation against Experiment , 2009 .

[18]  Maureen Hand,et al.  NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements , 2001 .

[19]  D. Carati,et al.  Large-eddy simulation , 2000 .

[20]  Massimiliano Masullo,et al.  Individual reactions to a multisensory immersive virtual environment: the impact of a wind farm on individuals , 2012, Cognitive Processing.

[21]  Massimiliano Masullo,et al.  The Effects of Vision-Related Aspects on Noise Perception of Wind Turbines in Quiet Areas , 2013, International journal of environmental research and public health.

[22]  Farhan Gandhi,et al.  Sensitivity of helicopter blade-vortex-interaction noise and vibration to interaction parameters , 2005 .

[23]  Øyvind Vik Nygard Wake behind a horizontal-axis wind turbine , 2011 .

[24]  R. K. Amiet Airfoil gust response and the sound produced by airfoil-vortex interaction , 1986 .

[25]  W. L. Willshire Long range downwind propagation of low-frequency sound , 1985 .

[26]  Maureen Hand,et al.  Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Con gurations and Available Data Campaigns , 2001 .

[27]  Niels N. Sørensen,et al.  Comparison of the near wake of different kinds of wind turbine CFD models , 2011 .

[28]  Niels N. Sørensen,et al.  On the Influence of Far-Wake Resolution on Wind Turbine Flow Simulations , 2007 .

[29]  R. Amiet Acoustic radiation from an airfoil in a turbulent stream , 1975 .

[30]  M. C. Robinson,et al.  Techniques for the determination of local dynamic pressure and angle of attack on a horizontal axis wind turbine , 1995 .

[31]  G. P. van den Berg,et al.  Effects of the wind profile at night on wind turbine sound , 2004 .

[32]  Poul Ejnar Sørensen,et al.  Fatigue loads for wind turbines operating in wakes , 1999 .

[33]  Woo Young Choi,et al.  Annoyance caused by amplitude modulation of wind turbine noise , 2011 .

[34]  Rebecca J. Barthelmie,et al.  Analytical modelling of wind speed deficit in large offshore wind farms , 2006 .

[35]  L. Long,et al.  3-D time-accurate CFD simulations of wind turbine rotor flow fields , 2006 .

[36]  W. Mccroskey,et al.  Dynamic Stall Experiments on Oscillating Airfoils , 1975 .

[37]  Colin H. Hansen,et al.  ENGINEERING NOISE CONTROL: Theory and Practice , 1988 .

[38]  Jens Nørkær Sørensen,et al.  Modeling of Aerodynamically Generated Noise From Wind Turbines , 2005 .

[39]  Eja Pedersen,et al.  Response to noise from modern wind farms in The Netherlands. , 2009, The Journal of the Acoustical Society of America.

[40]  Laura A. Brooks,et al.  Wind turbine noise mechanisms and some concepts for its control , 2011 .

[41]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[42]  Hester Bijl,et al.  Comparing different dynamic stall models , 2013 .

[43]  R. K. Amiet Noise due to rotor-turbulence interaction , 1978 .

[44]  John L. Schroeder,et al.  Documenting Wind Speed and Power Deficits behind a Utility-Scale Wind Turbine , 2013 .

[45]  Charles Meneveau,et al.  Interaction Between a Wind Turbine Array and a Turbulent Boundary Layer , 2010 .

[46]  Michel Roger,et al.  Back-scattering correction and further extensions of amiet's trailing-edge noise model. Part 1: theory , 2005 .

[47]  S. Moreau,et al.  Vortex-Shedding Noise and Potential-Interaction Noise Modeling by a Reversed Sears' Problem , 2006 .

[48]  N. D. Kelley,et al.  Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control , 1985 .

[49]  Danielle J. Moreau,et al.  Characterisation of noise in homes affected by wind turbine noise , 2012 .

[50]  Soogab Lee,et al.  Influence of blade-tower interaction in upwind-type horizontal axis wind turbines on aerodynamics , 2011 .

[51]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[52]  L. J. Vermeera,et al.  Wind turbine wake aerodynamics , 2003 .

[53]  Birger Plovsing,et al.  Wind turbine noise propagation: Comparison of measurements and predictions by a method based on geometrical ray theory , 2011 .

[54]  R. H. Schlinker,et al.  Rotor-vortex interaction noise , 1983 .

[55]  Judith M. Gallman Parametric computational study of isolated blade-vortex interaction noise , 1994 .

[56]  Ryan Wiser,et al.  Understanding wind turbine price trends in the U.S. over the past decade , 2012 .

[57]  Johan Meyers,et al.  Optimal turbine spacing in fully developed wind farm boundary layers , 2012 .

[58]  Elden F. Ray,et al.  Applications of Attenuations and Reflections in ISO 9613-2, Acoustics – Attenuation of Sound During Propagation Outdoors – Part 2: General Method of Calculation , 2004 .

[59]  Sheila E. Widnall,et al.  Helicopter Noise due to Blade‐Vortex Interaction , 1971 .

[60]  Gianfranco Guidati,et al.  Prediction of Turbulent Inflow and Trailing-Edge Noise for Wind Turbines , 2005 .

[61]  Massimiliano Masullo,et al.  Multisensory Assessment of Acoustic Comfort Aboard Metros: a Virtual Reality Study , 2012 .

[62]  W. J. Mccroskey,et al.  The Phenomenon of Dynamic Stall. , 1981 .

[63]  J. Gordon Leishman,et al.  Challenges in Modeling the Unsteady Aerodynamics of Wind Turbines , 2002 .

[64]  Jens Nørkær Sørensen,et al.  Actuator line/Navier–Stokes computations for the MEXICO rotor: comparison with detailed measurements , 2012 .

[65]  Evy Öhrström,et al.  PSYCHO-ACOUSTIC CHARACTERS OF RELEVANCE FOR ANNOYANCE OF WIND TURBINE NOISE , 2002 .

[66]  E. Pedersen,et al.  Perception and annoyance due to wind turbine noise--a dose-response relationship. , 2004, The Journal of the Acoustical Society of America.

[67]  Jang-Oh Mo,et al.  Effects of spacing between wind turbines on blade dynamic stall , 2012 .

[68]  M. Ben Salah,et al.  WAKE BEHIND A HORIZONTAL AXIS WIND TURBINE , 2012 .

[69]  Chi-Wang Shu,et al.  Classification and sound generation of two-dimensional interaction of two Taylor vortices , 2013 .

[70]  A. J. Bullmore,et al.  Mechanisms of amplitude modulation in wind turbine noise , 2014 .

[71]  W. L. Willshire Long‐range downwind propagation of low‐frequency noise , 1985 .

[72]  S von Hünerbein,et al.  Wind turbine amplitude modulation: research to improve understanding as to its cause & effect , 2013 .

[73]  F. Porté-Agel,et al.  A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects , 2009 .

[74]  Stéphane Moreau,et al.  Flow Features and Self-Noise of Airfoils Near Stall or in Stall , 2009 .

[75]  R. E. Longhouse Vortex shedding noise of low tip speed, axial flow fans , 1977 .

[76]  Thomas F. Brooks,et al.  Airfoil self-noise and prediction , 1989 .

[77]  H. Møller,et al.  Low-frequency noise from large wind turbines. , 2011, The Journal of the Acoustical Society of America.

[78]  D. N. Asimakopoulos,et al.  A field study of the wake behind a 2 MW wind turbine , 1988 .

[79]  Chin-Hoh Moeng,et al.  LARGE EDDY SIMULATION , 2002 .