Sintering of ceramics for clay in situ resource utilization on Mars

[1]  A. Gurlo,et al.  Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies , 2020 .

[2]  B. Horgan,et al.  Freeze-Thaw Cycling as a Chemical Weathering Agent on a Cold and Icy Mars , 2020 .

[3]  D. Britt,et al.  Feeding One Million People on Mars , 2019 .

[4]  M. Sperl,et al.  Solar Sintering for Lunar Additive Manufacturing , 2019, Journal of Aerospace Engineering.

[5]  A. Zocca,et al.  Additive manufacturing of SiSiC by layerwise slurry deposition and binder jetting (LSD-print) , 2019, Journal of the European Ceramic Society.

[6]  Ming Liu,et al.  Sintering of lunar regolith structures fabricated via digital light processing , 2019, Ceramics International.

[7]  Michael A. Miller,et al.  New simulants for martian regolith: Controlling iron variability , 2019, Planetary and Space Science.

[8]  C. Dendrinou-Samara,et al.  The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia , 2019, Materials.

[9]  S. Seal,et al.  Regolith-derived ferrosilicon as a potential feedstock material for wire-based additive manufacturing , 2019, Advances in Space Research.

[10]  A. Gurlo,et al.  Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant , 2018, PloS one.

[11]  A. Zocca,et al.  3D printing of porcelain by layerwise slurry deposition , 2018 .

[12]  Trent M. Smith,et al.  Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants , 2018, Icarus.

[13]  D. Ming,et al.  Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars , 2018, Science Advances.

[14]  A. Gurlo,et al.  Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments. , 2018, The Review of scientific instruments.

[15]  A. Makaya,et al.  A new planetary structure fabrication process using phosphoric acid , 2018 .

[16]  A. Jakus,et al.  Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks , 2018 .

[17]  M. Innocentini,et al.  Comparison of Methods for Determining the Water Absorption of Glazed Porcelain Stoneware Ceramic Tiles , 2017 .

[18]  A. Leone,et al.  Different shades of red: The complexity of mineralogical and physico-chemical factors influencing the colour of ceramics , 2017 .

[19]  M. Sperl,et al.  Influence of Mineral Composition on Sintering Lunar Regolith , 2017 .

[20]  Ying Zhong,et al.  Direct Formation of Structural Components Using a Martian Soil Simulant , 2017, Scientific Reports.

[21]  Michael H. Wong,et al.  Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications , 2017 .

[22]  A. Jakus,et al.  Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks , 2017, Scientific Reports.

[23]  A. Gurlo,et al.  Compact low power infrared tube furnace for in situ X-ray powder diffraction. , 2017, The Review of scientific instruments.

[24]  Ostap Rudakevych,et al.  Mars Ice House: Using the Physics of Phase Change in 3D Printing a Habitat with H2O , 2016 .

[25]  Andrew A. Shapiro,et al.  Automated Additive Construction (AAC) for Earth and Space Using In-situ Resources , 2016 .

[26]  R. J. Friel,et al.  Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials , 2016 .

[27]  G. Cusatis,et al.  A novel material for in situ construction on Mars: experiments and numerical simulations , 2015, 1512.05461.

[28]  A. Kareiva,et al.  Historical hematite pigment: Synthesis by an aqueous sol–gel method, characterization and application for the colouration of ceramic glazes , 2015 .

[29]  Benjamin Kading,et al.  Utilizing in-situ resources and 3D printing structures for a manned Mars mission , 2015 .

[30]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[31]  J. A. Grant,et al.  Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater , 2014 .

[32]  Scott L. Murchie,et al.  Prolonged magmatic activity on Mars inferred from the detection of felsic rocks , 2013 .

[33]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[34]  G. Cultrone,et al.  Evaluation of the effectiveness of treatment products in improving the quality of ceramics used in new and historical buildings , 2013 .

[35]  J. Bandfield,et al.  Geology of quartz and hydrated silica‐bearing deposits near Antoniadi Crater, Mars , 2012 .

[36]  Peter Walker,et al.  Modern earth masonry:Structural properties and structural design , 2012 .

[37]  S. Sen,et al.  Multifunctional Martian habitat composite material synthesized from in situ resources , 2010 .

[38]  J. Holanda,et al.  Using eggshell waste in red wall tiles , 2008 .

[39]  Corky Binggeli Materials for Interior Environments , 2007 .

[40]  D. Lados,et al.  Porosity analysis of PM materials by helium pycnometry , 2006 .

[41]  Giuseppe Cultrone,et al.  Influence of mineralogy and firing temperature on the porosity of bricks , 2004 .

[42]  B. Sherriff,et al.  A Mössbauer study of the color of Roman pottery from the Leptiminus archaeological site, Tunisia , 2002 .

[43]  G. T. Burstein Iron oxides in the laboratory, preparation and characterization , 1992 .

[44]  D. Snell,et al.  Economic Texts from Sumer , 1992 .

[45]  A. Gokarn,et al.  Studies in the thermal decomposition of natural siderites in the presence of air , 1990 .

[46]  R. Wessicken,et al.  CAMPANIAN POTTERY; THE NATURE OF THE BLACK COATING , 1981 .

[47]  W. Brownell Structural Clay Products , 1977 .

[48]  W. Brownell Black Coring in Structural Clay Products , 1957 .

[49]  C. M. Riley,et al.  Relation of Chemical Properties to the Bloating of Clays , 1951 .

[50]  Andrea Zocca,et al.  LSD-based 3D printing of alumina ceramics , 2017 .

[51]  M. Meyer,et al.  Geopolymers from lunar and Martian soil simulants , 2017 .

[52]  R. Haberle SOLAR SYSTEM/SUN, ATMOSPHERES, EVOLUTION OF ATMOSPHERES | Planetary Atmospheres: Mars , 2015 .

[53]  T. Mühler,et al.  Slurry-based powder beds for the selective laser sintering of silicate ceramics , 2015 .

[54]  Valentina Colla,et al.  Building components for an outpost on the Lunar soil by means of a novel 3D printing technology , 2014 .

[55]  M. Kuna,et al.  Determination of Strength and Fracture Toughness of Small Ceramic Discs Using the Small Punch Test and the Ball-on-three-balls Test , 2014 .

[56]  Yi-min Zhang,et al.  Preparation and characterization of red porcelain tiles with hematite tailings , 2013 .

[57]  Bernard H. Foing,et al.  Lunar and Planetary Science Conference , 2013 .

[58]  Andrew J. Baranauskas,et al.  KEVIN M , 2010 .

[59]  A. Gualtieri,et al.  THE USE OF NEPHELINE-SYENITE IN A BODY MIX FOR PORCELAIN STONEWARE TILES , 2005 .

[60]  Behrokh Khoshnevis,et al.  Automated construction by contour craftingrelated robotics and information technologies , 2004 .

[61]  Clayford T. Grimm,et al.  Durability of Brick Masonry: A Review of the Literature , 1985 .

[62]  H. S. Wilson Lightweight aggregates: properties, applications and outlook , 1979 .

[63]  William Ray Morgan,et al.  Oxidation and loss of weight of clay bodies during firing; a report of an investigation conducted by the Engineering Experiment Station, University of Illinois in coöperation with the Clay Products Association , 1936 .