η Carinae's Dusty Homunculus Nebula from Near-infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity

Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the great eruption. We present the 2.4–670 μm spectral energy distribution, constructed from legacy Infrared Space Observatory observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions that are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 μm feature. Our preferred model contains nitrides AlN and Si3N4 in low abundances. Dust masses range from 0.25 to 0.44 , but in both cases, due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a central region. An additional compact feature is detected at 390 μm. We obtain = 2.96 × 106 , a 25% decline from an average of mid-IR photometric levels observed in 1971–1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25%–40% of optical and UV radiation to escape from the central source. We also present an analysis of 12CO and 13CO J = 5–4 through 9–8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12C ii] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.

[1]  S. Takeuchi,et al.  Pure iron grains are rare in the universe , 2017, Science Advances.

[2]  G. Meynet,et al.  The advanced stages of stellar evolution: impact of mass loss, rotation, and link with B[e] stars , 2016, 1610.07332.

[3]  G. Weigelt,et al.  The fossil wind structures of Eta Carinae: changes across one 5.54-yr cycle , 2016, 1608.06193.

[4]  K. Menten,et al.  SPATIAL DISTRIBUTION AND KINEMATICS OF THE MOLECULAR MATERIAL ASSOCIATED WITH ETA CARINAE , 2016, 1606.04575.

[5]  Western Michigan University,et al.  He II λ4686 EMISSION FROM THE MASSIVE BINARY SYSTEM IN η CAR: CONSTRAINTS TO THE ORBITAL ELEMENTS AND THE NATURE OF THE PERIODIC MINIMA , 2016, The Astrophysical Journal.

[6]  S. Zwart,et al.  Was the nineteenth century giant eruption of Eta Carinae a merger event in a triple system , 2015, 1511.06889.

[7]  G. Noble,et al.  Systematic characterization of the Herschel SPIRE Fourier Transform Spectrometer , 2015, 1502.05717.

[8]  P. Podsiadlowski,et al.  LUMINOUS BLUE VARIABLES AND SUPERLUMINOUS SUPERNOVAE FROM BINARY MERGERS , 2014, 1410.2426.

[9]  A. Tielens,et al.  Dust composition and mass-loss return from the luminous blue variable R71 in the LMC , 2014, 1409.3015.

[10]  D. Falceta-Gonçalves,et al.  η CARINAE BABY HOMUNCULUS UNCOVERED BY ALMA , 2014, 1406.6297.

[11]  M. J. Griffin,et al.  Calibration of the Herschel SPIRE Fourier Transform Spectrometer , 2014, 1403.1107.

[12]  M. Feast,et al.  Near-Infrared Evidence for a Sudden Temperature Increase in Eta Carinae , 2014, 1401.4999.

[13]  Bruce M. Swinyard,et al.  Herschel SPIRE fourier transform spectrometer: calibration of its bright-source mode , 2014, 1401.2045.

[14]  N. Morrell,et al.  THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS , 2013, 1312.6222.

[15]  Marc Ferlet,et al.  Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer , 2013, 1306.5780.

[16]  S. Zeidler,et al.  Optical constants of refractory oxides at high temperatures - Mid-infrared properties of corundum, spinel, and α-quartz, potential carriers of the 13 μm feature , 2013, 1304.1717.

[17]  V. Ossenkopf,et al.  Carbon fractionation in photo-dissociation regions , 2013 .

[18]  David A. Neufeld,et al.  Herschel/HIFI observations of [C II] and [13C II] in photon-dominated regions , 2013 .

[19]  T. Preibisch,et al.  Herschel far-infrared observations of the Carina Nebula complex II: The embedded young stellar and protostellar population , 2012, 1211.2995.

[20]  V. Ossenkopf,et al.  Carbon Fractionation in PDRs , 2012, 1211.3562.

[21]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[22]  Felix Rebell,et al.  The SOFIA far-infrared spectrometer FIFI-LS: spearheading a post Herschel era , 2012, Other Conferences.

[23]  P. Goldsmith,et al.  COLLISIONAL EXCITATION OF THE [C ii] FINE STRUCTURE TRANSITION IN INTERSTELLAR CLOUDS , 2012, 1209.4536.

[24]  W. Vacca,et al.  FIRST SCIENCE OBSERVATIONS WITH SOFIA/FORCAST: THE FORCAST MID-INFRARED CAMERA , 2012, 1202.5021.

[25]  R. Humphreys,et al.  SECULAR CHANGES IN ETA CARINAE’S WIND 1998–2011,,,, , 2011, 1112.4338.

[26]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[27]  R. Humphreys,et al.  Eta Carinae: From 1600 to the Present , 2012 .

[28]  R. Humphreys,et al.  Eta Carinae and the supernova impostors , 2012 .

[29]  G. Weigelt,et al.  High-Resolution Studies of Eta Carinae’s Ejecta and Stellar Wind , 2012 .

[30]  Michael Olberg,et al.  In-orbit performance of Herschel-HIFI , 2012 .

[31]  N. Smith,et al.  A revised historical light curve of Eta Carinae and the timing of close periastron encounters , 2010, 1010.3719.

[32]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[33]  K. Murata,et al.  EFFECTS OF FORSTERITE GRAIN SHAPE ON INFRARED SPECTRA , 2010 .

[34]  Yangting Lin,et al.  ISOTOPIC ANALYSIS OF SUPERNOVA SiC AND Si3N4 GRAINS FROM THE QINGZHEN (EH3) CHONDRITE , 2010 .

[35]  F. A. Bareilles,et al.  The η Carinæ optical 2009.0 event, a new “eclipse-like” phenomenon , 2009, 0907.1898.

[36]  L. Dunne,et al.  Submillimetre variability of Eta Carinae: cool dust within the outer ejecta , 2009, 0911.0176.

[37]  A. Tsuchiyama,et al.  Shape and lattice distortion effects on infrared absorption spectra of olivine particles , 2009 .

[38]  Laboratory-based grain-shape models for simulating dust infrared spectra , 2009, 0907.3350.

[39]  S. Owocki,et al.  The extended interacting wind structure of Eta Carinae , 2009 .

[40]  M. Kraus The pre- versus post-main sequence evolutionary phase of B(e) stars Constraints from 13 CO band emission , 2009, 0901.0714.

[41]  Long-term optical monitoring of η Carinae - Multiband light curves for a complete orbital period , 2008, 0812.1814.

[42]  R. Sharp,et al.  Near-infrared integral field spectroscopy of the Homunculus nebula around η Carinae using Gemini/CIRPASS , 2008, 0804.0240.

[43]  Landessternwarte,et al.  A multispectral view of the periodic events in η Carinae , 2007, 0711.4297.

[44]  A. D. Koter,et al.  Mass loss from stars and the evolution of stellar clusters : proceedings of a workshop held at Lunteren, The Netherlands 29 May - 1 June 2006 , 2008 .

[45]  R. S. Levenhagen,et al.  The periodicity of the η Carinae events , 2007, 0711.4250.

[46]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[47]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[48]  P. Tuthill,et al.  The Keck Aperture-masking Experiment: Near-Infrared Sizes of Dusty Wolf-Rayet Stars , 2006, astro-ph/0610437.

[49]  A. Speck,et al.  Challenging the identification of nitride dust in extreme carbon star spectra , 2006 .

[50]  L. Dunne,et al.  Submillimetre emission from η Carinae , 2006, astro-ph/0608333.

[51]  J. Bally,et al.  Cleaning Up η Carinae: Detection of Ammonia in the Homunculus Nebula , 2006, astro-ph/0605543.

[52]  P. Hartigan,et al.  Infrared [Fe II] Emission from P Cygni’s Nebula: Atomic Data, Mass, Kinematics, and the 1600 AD Outburst , 2005, astro-ph/0510836.

[53]  M. A. Brewster,et al.  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[54]  P. Cox,et al.  SIMBA Observations of the Keyhole Nebula , 2005 .

[55]  E. Verner,et al.  Discovery of CH and OH in the –513 km s–1 Ejecta of η Carinae , 2005, astro-ph/0505353.

[56]  T. Gull,et al.  The Ultraviolet Spectrum of η Carinae: Investigation of the Ejecta Absorption , 2005 .

[57]  J. Hovenier,et al.  Modeling optical properties of cosmic dust grains using a distribution of hollow spheres , 2005, astro-ph/0503068.

[58]  E. Verner,et al.  The Binarity of η Carinae Revealed from Photoionization Modeling of the Spectral Variability of the Weigelt Blobs B and D , 2005, astro-ph/0502106.

[59]  A. Lagrange,et al.  The sub-arcsecond dusty environment of Eta Carinae , 2005, astro-ph/0501159.

[60]  G. Meynet,et al.  Yields of rotating stars at solar metallicity , 2004, astro-ph/0412454.

[61]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[62]  J. Fischera On the thermal behaviour of small iron grains , 2004, astro-ph/0412425.

[63]  K. Gayley,et al.  A Porosity-Length Formalism for Photon-Tiring-limited Mass Loss from Stars above the Eddington Limit , 2004, astro-ph/0409573.

[64]  T. Onaka,et al.  Origin of diffuse C II 158 micron and Si II 35 micron emission in the Carina nebula , 2004 .

[65]  M. Feast,et al.  The 2003 shell event in η Carinae , 2004, astro-ph/0404513.

[66]  J. Morse,et al.  Nitrogen and Oxygen Abundance Variations in the Outer Ejecta of η Carinae: Evidence for Recent Chemical Enrichment , 2004, astro-ph/0402476.

[67]  J. Martín,et al.  η Carinae’s Brightness Variations Since 1998: Hubble Space Telescope Observations of the Central Star* ** , 2004, astro-ph/0401254.

[68]  N. Schneider,et al.  The Trumpler 14 photodissociation region in the Carina Nebula , 2003 .

[69]  J. Linsky,et al.  Discovery of a Little Homunculus within the Homunculus Nebula of η Carinae , 2003 .

[70]  E. Sedlmayr,et al.  On the gas temperature in the shocked circumstellar envelopes of pulsating stars III. Dynamical models for AGB star winds including time-dependent dust formation and non-LTE cooling , 2003 .

[71]  Robert D. Gehrz,et al.  Mass and Kinetic Energy of the Homunculus Nebula around η Carinae , 2003 .

[72]  Stephen M. White,et al.  Radio evidence of recent mass ejection from η Carinae , 2003 .

[73]  Martin F. Kessler,et al.  The calibration legacy of the ISO Mission , 2003 .

[74]  K. Leuven,et al.  Dust and the spectral energy distribution of the OH/IR star OH 127.8+0.0: Evidence for circumstellar metallic iron , 2002, astro-ph/0201128.

[75]  UK,et al.  In hot pursuit of the hidden companion of η Carinae: an X-ray determination of the wind parameters , 2002, astro-ph/0201105.

[76]  H. Coroller,et al.  Non-linear radiative models of post-AGB stars: Application to HD 56126 , 2001 .

[77]  Franz Kerschbaum,et al.  Infrared optical properties of spinels A study of the carrier of the 13, 17 and 32m emission features observed in ISO-SWS spectra of oxygen-rich AGB stars ? , 2001 .

[78]  Kris Davidson,et al.  On the Nature of the Central Source in η Carinae , 2001 .

[79]  P. R. Wesselius,et al.  Erratum: The ISO-SWS spectrum of planetary nebula NGC 7027 , 2001 .

[80]  D. Ebbets,et al.  Hubble Space Telescope Proper-Motion Measurements of the η Carinae Nebula , 2001 .

[81]  A. Stark,et al.  CO (J = 4→3) and [C I] Observations of the Carina Molecular Cloud Complex , 2001, astro-ph/0101272.

[82]  Paul Hartogh,et al.  GREAT: the first-generation German heterodyne receiver for SOFIA , 2000, Astronomical Telescopes and Instrumentation.

[83]  P. Price,et al.  Large-Scale Structure of the Carina Nebula , 2000, The Astrophysical journal.

[84]  P. Cox,et al.  Discovery of a massive equatorial torus in the η Carinae stellar system , 1999, Nature.

[85]  User Manual for DUSTY , 1999, astro-ph/9910475.

[86]  P. Goldsmith,et al.  Population Diagram Analysis of Molecular Line Emission , 1999 .

[87]  D. Ebbets,et al.  Hubble Space Telescope Wide Field Planetary Camera 2 Observations of η Carinae , 1998 .

[88]  N. Smith,et al.  Proper Motions in the Ejecta of η Carinae with a 50 Year Baseline , 1998 .

[89]  K. Brooks,et al.  An Investigation of the Molecular Clouds of the Carina HII Region/Molecular Cloud Complex—First Results , 1998, Publications of the Astronomical Society of Australia.

[90]  M. Gerin,et al.  CO, C I, and C II Observations of NGC 7023 , 1998, astro-ph/9802116.

[91]  S. White,et al.  Evolution of the radio outburst from the supermassive star η Carinae from 1992 to 1996 , 1997 .

[92]  P. Conti,et al.  Eta Carinae: a long period binary? , 1997 .

[93]  Kris Davidson,et al.  Eta carinae and its environment , 1997 .

[94]  Louis Antonelli,et al.  The 5.52 Year Cycle of Eta Carinae , 1996 .

[95]  Edward J. Shaya,et al.  Astrometric Analysis of the Homunculus of eta Carinae With the Hubble Space Telescope , 1996 .

[96]  P. Hoppe,et al.  Silicon Nitride from Supernovae , 1995 .

[97]  P. Cox Gas and Dust in the Carina Nebula (Invited Paper) , 1995 .

[98]  P. Roche,et al.  Mid-infrared studies of η Carinae-I. Subarcsecond imaging of 12.5 and 17 μm , 1995 .

[99]  M. Kundu,et al.  Intense radio outburst from the supermassive star Eta Carinae , 1995 .

[100]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[101]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[102]  D. Hillier,et al.  The Shape of the Homunculus Nebula around η Carinae , 1993, Publications of the Astronomical Society of Australia.

[103]  A. Penzias,et al.  C-12/C-13 isotope ratio across the Galaxy from observations of C-13/O-18 in molecular clouds , 1990 .

[104]  A. Jones Iron or iron oxide grains in the interstellar medium , 1990 .

[105]  R. R. Daniel,et al.  Far-infrared (120-300 micron) observations of the Carina Nebula , 1988 .

[106]  J. Hackwell,et al.  Airborne spectrophotometry of Eta Carinae from 4.5 to 7.5 microns and a model for source morphology , 1987 .

[107]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[108]  T. Graedel,et al.  Carbon and oxygen isotope fractionation in dense interstellar clouds , 1984 .

[109]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[110]  N. Walborn,et al.  The remarkable spectrum of some material ejected by Eta Carinae , 1982 .

[111]  G. Robinson,et al.  The spectral and spatial distribution of radiation from Eta Carinae. I. A spherical dust shell model approach. , 1978 .

[112]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[113]  P. Biermann Mass Loss from Stars and the Chemical Evolution of the Interstellar Medium , 1977 .

[114]  B. Jones,et al.  The infrared spectrum and structure of Eta Carinae. , 1975 .

[115]  G. Neugebauer,et al.  34-micron observations of eta Carinae, G333.6-0.2, and the galactic center , 1974 .

[116]  A. R. Hyland,et al.  Observation and Interpretation of the Infra-red Spectrum of Eta Carinae , 1973 .

[117]  G. Neugebauer,et al.  The infrared spectrum and angular size of Eta Carinae. , 1973 .

[118]  J. Westphal,et al.  Infrared Observations of Eta Carinae to 20 Microns , 1969 .

[119]  J. Westphal,et al.  Infrared Observations of Eta Carinae , 1968 .

[120]  E. Gaviola Eta Carinae. II. The Spectrum. , 1953 .

[121]  A. Schuster On the absorption and scattering of light , 1920 .