Efficient CO₂ capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups.

A porous triazine and carbazole bifunctionalized task-specific polymer has been synthesized via a facile Friedel-Crafts reaction. The resultant porous framework exhibits excellent CO2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO2 over N2.

[1]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[2]  W. Wang,et al.  A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker , 2011 .

[3]  Zhuojun Yan,et al.  Robust tri(4-ethynylphenyl)amine-based porous aromatic frameworks for carbon dioxide capture , 2014 .

[4]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[5]  Heping Ma,et al.  Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures , 2014 .

[6]  Bao-hang Han,et al.  Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake. , 2014, Small.

[7]  Hasmukh A. Patel,et al.  Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers , 2013, Nature Communications.

[8]  Wei Wang,et al.  Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials , 2012, Advanced materials.

[9]  Rajamani Krishna,et al.  Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. , 2011, Journal of the American Chemical Society.

[10]  Yu Han,et al.  A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture , 2013 .

[11]  Bao-hang Han,et al.  Microporous polycarbazole with high specific surface area for gas storage and separation. , 2012, Journal of the American Chemical Society.

[12]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[13]  S. Dai,et al.  A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. , 2012, Journal of the American Chemical Society.

[14]  Hasmukh A. Patel,et al.  Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. , 2012, Chemical communications.

[15]  Jun Hu,et al.  Efficient CO2 Capture by a 3D Porous Polymer Derived from Tröger's Base. , 2013, ACS macro letters.

[16]  Andrew I. Cooper,et al.  Chemical tuning of CO2 sorption in robust nanoporous organic polymers , 2011 .

[17]  A. Cooper,et al.  Microporous organic polymers for carbon dioxide capture , 2011 .

[18]  R. Krishna,et al.  Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. , 2012, Angewandte Chemie.

[19]  Pezhman Arab,et al.  Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture , 2014 .

[20]  P. Balbuena,et al.  Building multiple adsorption sites in porous polymer networks for carbon capture applications , 2013 .

[21]  A. Cooper,et al.  Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers , 2013 .

[22]  P. Jena,et al.  New insights into carbon dioxide interactions with benzimidazole-linked polymers. , 2014, Chemical communications.

[23]  Hani M. El‐Kaderi,et al.  Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO2 Capture and H2 Storage , 2011 .

[24]  T. E. Reich,et al.  High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. , 2012, Chemical communications.

[25]  A. Cooper,et al.  Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. , 2012, Journal of the American Chemical Society.