Analysis of Nanostructuring in High Figure‐of‐Merit Ag1–xPbmSbTe2+m Thermoelectric Materials
暂无分享,去创建一个
Matthew J. Kramer | Duck Young Chung | Mercouri G. Kanatzidis | M. Kanatzidis | M. Kramer | B. Cook | D. Chung | J. Harringa | J. L. Harringa | Bruce A. Cook | Mi-Kyung Han | Mi Kyung Han
[1] D. Rowe,et al. Boundary scattering of phonons , 1978 .
[2] M. Kanatzidis,et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.
[3] Matthew J. Kramer,et al. In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85 , 2007 .
[4] M. Kanatzidis,et al. Coexistence of large thermopower and degenerate doping in the nanostructured material Ag0.85SnSb1.15Te3 , 2006 .
[5] Min Zhou,et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .
[6] M. Kanatzidis,et al. Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation , 2006 .
[7] G. J. Snyder,et al. Complex thermoelectric materials. , 2008, Nature materials.
[8] Cronin B. Vining,et al. A model for the high‐temperature transport properties of heavily doped n‐type silicon‐germanium alloys , 1991 .
[9] Cronin B. Vining,et al. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys , 1991 .
[10] F. D. Rosi,et al. Semiconductor materials for thermoelectric power generation up to 700 C , 1960, Electrical Engineering.
[11] Fei Ren,et al. Nanostructured Thermoelectric Materials and High-Efficiency Power-Generation Modules , 2007 .
[12] Ctirad Uher,et al. Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.
[13] J. Verhoeven. Fundamentals of Physical Metallurgy , 1975 .
[14] G. Cody,et al. Thermal Conductivity of Ge-Si Alloys at High Temperatures , 1962 .
[15] Arun Majumdar,et al. Nanostructuring expands thermal limits , 2007 .
[16] R. Venkatasubramanian,et al. Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.
[17] K. Easterling,et al. Phase Transformations in Metals and Alloys , 2021 .
[18] M. Toprak,et al. The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb3 , 2004 .
[19] M. J. Kramer,et al. Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material , 2007 .
[20] M. P. Walsh,et al. Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.
[21] Kang L. Wang,et al. Thermoelectric figure of merit enhancement in a quantum dot superlattice , 2000 .
[22] M. Kramer. A strategy for rapid analysis of the variations in the reduced distribution function of liquid metals and metallic glasses , 2007 .
[23] Kuei-Fang Hsu,et al. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.
[24] Min Zhou,et al. Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.
[25] Sossina M. Haile,et al. Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1–xZn2Sb2 , 2005 .
[26] B. Sales. Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials , 1998 .