The Two-Dimensional Incompressible Boussinesq Equations with General Critical Dissipation

The two-dimensional incompressible Boussinesq equations with partial or fractional dissipation have recently attracted considerable attention and the global regularity issue has been extensively investigated. This paper aims at the global regularity in the case when the dissipation is critical. The critical dissipation refers to $\alpha +\beta=1$ when $\Lambda^\alpha \equiv (-\Delta)^{\frac{\alpha}{2}}$ and $\Lambda^\beta$ represent the fractional Laplacian dissipation in the velocity and the temperature equations, respectively. When $\alpha=1$ and $\beta =0$ or when $\alpha=0$ and $\beta=1$, the global regularity was obtained in [T. Hmidi, S. Keraani, and F. Rousset, J. Differential Equations, 249 (2010), pp. 2147--2174; T. Hmidi, S. Keraani, and F. Rousset, Comm. Partial Differential Equations, 36 (2011), pp. 420--445]. However, the approaches there do not apply to the situation when $\alpha+\beta=1$ with both $\alpha>0$ and $\beta>0$. The novelty here is to reduce the critical Boussinesq system to a cr...

[1]  E. Titi,et al.  Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion , 2013 .

[2]  Charles R. Doering,et al.  Infinite Prandtl Number Convection , 1999 .

[3]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[4]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[5]  Jiahong Wu,et al.  Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces , 2006 .

[6]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .

[7]  Marius Paicu,et al.  GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO , 2008, 0809.4984.

[8]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[9]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[10]  Charles Fefferman,et al.  Scalars convected by a two‐dimensional incompressible flow , 2002 .

[11]  E Weinan,et al.  Small‐scale structures in Boussinesq convection , 1998 .

[12]  Peter Constantin,et al.  Euler Equations, Navier-Stokes Equations and Turbulence , 2006 .

[13]  Qionglei Chen,et al.  A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation , 2006 .

[14]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[15]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[16]  D. Chae,et al.  The 2D Boussinesq equations with logarithmically supercritical velocities , 2011, 1111.2082.

[17]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[18]  C. Doering,et al.  Internal heating driven convection at infinite Prandtl number , 2011, 1104.2792.

[19]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[20]  C. Cao,et al.  Global regularity for the 2D anisotropic Boussinesq Equations with vertical dissipation , 2011, 1108.2678.

[21]  C. Doering,et al.  New upper bounds and reduced dynamical modeling for Rayleigh–Bénard convection in a fluid saturated porous layer , 2012 .

[22]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[23]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[24]  T. Hmidi On a maximum principle and its application to logarithmically critical Boussinesq system , 2009, 0910.4991.

[25]  F. Rousset,et al.  Global Well-Posedness for Euler–Boussinesq System with Critical Dissipation , 2010 .

[26]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[27]  Thomas Y. Hou,et al.  GLOBAL WELL-POSEDNESS OF THE VISCOUS BOUSSINESQ EQUATIONS , 2004 .

[28]  Changxing Miao,et al.  On the global well-posedness of a class of Boussinesq–Navier–Stokes systems , 2009, 0910.0311.

[29]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[30]  A. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[31]  F. Rousset,et al.  Global well-posedness for a Boussinesq- Navier-Stokes System with critical dissipation , 2009, 0904.1536.

[32]  Dongho Chae,et al.  Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .

[33]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[34]  Jonathan A. Parker,et al.  Euler equations ∗ , 2007 .